IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v45y2012icp128-137.html
   My bibliography  Save this article

An integrated wind-photovoltaic-battery system with reduced power-electronic interface and fast control for grid-tied and off-grid applications

Author

Listed:
  • Ghoddami, Hamidreza
  • Delghavi, Mohammad B.
  • Yazdani, Amirnaser

Abstract

This paper proposes an integrated wind-photovoltaic-battery hybrid system that features a simple power management strategy, requires a lower number of power-electronic converters, and eliminates the need for dump loads. Thus, it is expected to offer a lower cost and higher efficiency, and to enable easier integration with distribution networks, as compared with a set of three stand-alone system. The power management strategy of the proposed hybrid system enables (1) rapid control of the wind and photovoltaic (PV) power outputs for tightly regulating the battery current, (2) off-grid operation with black-start capability, (3) grid-connected operation, and (4) safe transition from the grid-connected mode to the off-grid mode, and vice versa, without a need for communications with the host grid. Further, the proposed hybrid system is expected to have plug-and-play and power sharing capabilities and, therefore, suited for multi-generator remote electrification systems. The effectiveness of the proposed hybrid system is demonstrated through time-domain simulation studies in the PSCAD/EMTDC software environment.

Suggested Citation

  • Ghoddami, Hamidreza & Delghavi, Mohammad B. & Yazdani, Amirnaser, 2012. "An integrated wind-photovoltaic-battery system with reduced power-electronic interface and fast control for grid-tied and off-grid applications," Renewable Energy, Elsevier, vol. 45(C), pages 128-137.
  • Handle: RePEc:eee:renene:v:45:y:2012:i:c:p:128-137
    DOI: 10.1016/j.renene.2012.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bakhsh, Farhad Ilahi & Khatod, Dheeraj Kumar, 2016. "A new synchronous generator based wind energy conversion system feeding an isolated load through variable frequency transformer," Renewable Energy, Elsevier, vol. 86(C), pages 106-116.
    2. Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
    3. Urtasun, Andoni & Sanchis, Pablo & Barricarte, David & Marroyo, Luis, 2014. "Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation," Renewable Energy, Elsevier, vol. 66(C), pages 325-336.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    5. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.
    6. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    7. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    2. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    4. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    5. Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
    6. Hatti, M. & Meharrar, A. & Tioursi, M., 2011. "Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5104-5110.
    7. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    8. Alhassan H. Alattar & S. I. Selem & Hamid M. B. Metwally & Ahmed Ibrahim & Raef Aboelsaud & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Performance Enhancement of Micro Grid System with SMES Storage System Based on Mine Blast Optimization Algorithm," Energies, MDPI, vol. 12(16), pages 1-23, August.
    9. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    10. Sungmin Park & Sung-Yeul Park & Peng Zhang & Peter Luh & Michel T. J. Rakotomavo & Camilo Serna, 2016. "Comparative Life Cycle Cost Analysis of Hardening Options for Critical Loads," Energies, MDPI, vol. 9(7), pages 1-15, July.
    11. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    12. Rangel, N. & Li, H. & Aristidou, P., 2023. "An optimisation tool for minimising fuel consumption, costs and emissions from Diesel-PV-Battery hybrid microgrids," Applied Energy, Elsevier, vol. 335(C).
    13. Song, Jeonghun & Oh, Si-Doek & Yoo, Yungpil & Seo, Seok-Ho & Paek, Insu & Song, Yuan & Song, Seung Jin, 2018. "System design and policy suggestion for reducing electricity curtailment in renewable power systems for remote islands," Applied Energy, Elsevier, vol. 225(C), pages 195-208.
    14. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    15. George Adwek & Shen Boxiong & Paul O. Ndolo & Zachary O. Siagi & Chebet Chepsaigutt & Cicilia M. Kemunto & Moses Arowo & John Shimmon & Patrobers Simiyu & Abel C. Yabo, 2020. "The solar energy access in Kenya: a review focusing on Pay-As-You-Go solar home system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 3897-3938, June.
    16. Belmili, Hocine & Haddadi, Mourad & Bacha, Seddik & Almi, Mohamed Fayçal & Bendib, Boualem, 2014. "Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 821-832.
    17. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    18. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    19. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    20. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:45:y:2012:i:c:p:128-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.