IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1595-1602.html
   My bibliography  Save this article

Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator

Author

Listed:
  • Chong, K.K.
  • Lim, C.Y.
  • Hiew, C.W.

Abstract

A novel cost-effective solar furnace system is proposed to be consisted of a Non-Imaging Focusing Heliostat (NIFH) and a much smaller parabolic concentrator. In order to simplify the design and hence leading to the cost reduction, a fixed geometry of the NIFH heliostat is adopted in the novel solar furnace system by omitting the requirement of continuous astigmatic correction throughout the year with the use of local controllers. The performance of this novel solar furnace configuration can be optimized when the heliostat’s spinning-axis is orientated in such a way that the annual variations of incident angle and therefore the annual variations of aberrant image size are the least. To verify the new configuration, a prototype solar furnace has been constructed at Universiti Tunku Abdul Rahman.

Suggested Citation

  • Chong, K.K. & Lim, C.Y. & Hiew, C.W., 2011. "Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator," Renewable Energy, Elsevier, vol. 36(5), pages 1595-1602.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1595-1602
    DOI: 10.1016/j.renene.2010.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jabari, Farkhondeh & Mohammadi-ivatloo, Behnam & Bannae Sharifian, Mohammad Bagher & Nojavan, Sayyad, 2018. "Design and robust optimization of a novel industrial continuous heat treatment furnace," Energy, Elsevier, vol. 142(C), pages 896-910.
    2. Hu, Yeguang & Shen, Hao & Yao, Yingxue, 2018. "A novel sun-tracking and target-aiming method to improve the concentration efficiency of solar central receiver systems," Renewable Energy, Elsevier, vol. 120(C), pages 98-113.
    3. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    4. Chong, Kok-Keong & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Ming-Hui & Tan, Woei-Chong & Lim, Boon-Han, 2017. "Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators," Applied Energy, Elsevier, vol. 204(C), pages 898-911.
    5. Maiga, Mahamadou & N’Tsoukpoe, Kokouvi Edem & Gomna, Aboubakar & Fiagbe, YesuenyeagbeA.K., 2024. "Sources of solar tracking errors and correction strategies for heliostats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Pataro, Igor M.L. & Gil, Juan D. & Roca, Lidia & Guzmán, José L. & Berenguel, Manuel & Cañadas, Inmaculada, 2024. "Enhancing solar furnace thermal stress testing using an adaptive model and nonlinear predictive control," Renewable Energy, Elsevier, vol. 230(C).
    7. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1595-1602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.