IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i11p2585-2589.html
   My bibliography  Save this article

Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

Author

Listed:
  • Kratzeisen, M.
  • Müller, J.

Abstract

Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured.

Suggested Citation

  • Kratzeisen, M. & Müller, J., 2010. "Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves," Renewable Energy, Elsevier, vol. 35(11), pages 2585-2589.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2585-2589
    DOI: 10.1016/j.renene.2010.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kratzeisen, M. & Müller, J., 2009. "Effect of fatty acid composition of soybean oil on deposit and performance of plant oil pressure stoves," Renewable Energy, Elsevier, vol. 34(11), pages 2461-2466.
    2. Williams, Paul T. & Horne, Patrick A., 1994. "The role of metal salts in the pyrolysis of biomass," Renewable Energy, Elsevier, vol. 4(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    2. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    3. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    4. Beatrice Vincenti & Enrico Paris & Monica Carnevale & Adriano Palma & Ettore Guerriero & Domenico Borello & Valerio Paolini & Francesco Gallucci, 2022. "Saccharides as Particulate Matter Tracers of Biomass Burning: A Review," IJERPH, MDPI, vol. 19(7), pages 1-20, April.
    5. Pan Gao & Lu Xue & Qiang Lu & Changqing Dong, 2015. "Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis," Energies, MDPI, vol. 8(11), pages 1-12, November.
    6. Collins Okello & Stefania Pindozzi & Salvatore Faugno & Lorenzo Boccia, 2014. "Appraising Bioenergy Alternatives in Uganda Using Strengths, Weaknesses, Opportunities and Threats (SWOT)-Analytical Hierarchy Process (AHP) and a Desirability Functions Approach," Energies, MDPI, vol. 7(3), pages 1-22, February.
    7. Muthukumar Palanisamy & Lav Kumar Kaushik & Arun Kumar Mahalingam & Sunita Deb & Pratibha Maurya & Sofia Rani Shaik & Muhammad Abdul Mujeebu, 2023. "Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies," Energies, MDPI, vol. 16(2), pages 1-37, January.
    8. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    9. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    10. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2585-2589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.