IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i11p2362-2365.html
   My bibliography  Save this article

Production of NaBH4 and hydrogen release with catalyst

Author

Listed:
  • Çakanyıldırım, Çetin
  • Gürü, Metin

Abstract

The purpose of this study was to investigate the production of NaBH4 as hydrogen storage material and testing its hydrogen storage capacity in presence of catalyst. Synthesis of NaBH4 was investigated with NaH and trimethyl borate which was also produced in previous studies. Different reaction temperatures, times and reactant ratios constitute the three parameters of the production process. The best combination determined by FT-IR, XRF and XRD analyses, was found to be 1.413 (mol/mol) TMB over NaH at 250°C for 90min. In order to increase the NaBH4 purity ethylene diamine was used as solvent at 75°C. After 4 extraction and crystallization processes 85.17% NaBH4 purity was obtained. Moreover, hydrogen content of the product NaBH4 was measured in a system with different catalysts since catalyst efficiency is important in decreasing the water dependence of dehydrogenation. CoCl2 catalyst proved best by taking out more hydrogen, both from the NaBH4 structure and from water.

Suggested Citation

  • Çakanyıldırım, Çetin & Gürü, Metin, 2009. "Production of NaBH4 and hydrogen release with catalyst," Renewable Energy, Elsevier, vol. 34(11), pages 2362-2365.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2362-2365
    DOI: 10.1016/j.renene.2009.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsunaga, T. & Buchter, F. & Miwa, K. & Towata, S. & Orimo, S. & Züttel, A., 2008. "Magnesium borohydride: A new hydrogen storage material," Renewable Energy, Elsevier, vol. 33(2), pages 193-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    2. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Nathalie Sick & Matthias Blug & Jens Leker, 2014. "The Influence of Raw Material Prices on the Development of Hydrogen Storage Materials: The Case of Metal Hydrides," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 735-760, December.
    4. Hai-Wen Li & Yigang Yan & Shin-ichi Orimo & Andreas Züttel & Craig M. Jensen, 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage," Energies, MDPI, vol. 4(1), pages 1-30, January.
    5. Çakanyıldırım, Çetin & Gürü, Metin, 2008. "Processing of LiBH4 from its elements by ball milling method," Renewable Energy, Elsevier, vol. 33(11), pages 2388-2392.
    6. Çakanyıldırım, Çetin & Gürü, Metin, 2010. "Supported CoCl2 catalyst for NaBH4 dehydrogenation," Renewable Energy, Elsevier, vol. 35(4), pages 839-844.
    7. Olena Zavorotynska & Stefano Deledda & Jenny G. Vitillo & Ivan Saldan & Matylda N. Guzik & Marcello Baricco & John C. Walmsley & Jiri Muller & Bjørn C. Hauback, 2015. "Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride," Energies, MDPI, vol. 8(9), pages 1-18, August.
    8. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg," Renewable Energy, Elsevier, vol. 188(C), pages 411-424.
    9. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2362-2365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.