IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i11p2388-2392.html
   My bibliography  Save this article

Processing of LiBH4 from its elements by ball milling method

Author

Listed:
  • Çakanyıldırım, Çetin
  • Gürü, Metin

Abstract

Investigations of alternative renewable energy resources continue, with many studies concentrating on hydrogen storage. However, there are a few problems such as storage, transportation, delivery to the user and usage safely, to be addressed to facilitate commercialization and wide usage of the hydrogen. The absorbed form within the metal hydrides seems to be the best solution of this problem. Since Li is the lightest metal, it has the advantage as the stored amount of hydrogen mass ratio. LiBH4 production process was investigated using elemental Li, B and H2. Spex type ball milling with tungsten carbide, stainless steel and zirconia type vessels, was used to mix the different amount of Li and B under argon atmosphere. X-ray diffraction pattern demonstrated that the LiB was obtained. A system was designed to provide a hydrogen atmosphere of 60bars to force hydrogen into the LiB structure. FTIR analysis strongly indicated the LiBH4 compound when the mol ratio of B/Li is 0.214. Thermal decomposition and heat flow experiments performed simultaneously with DSC and TGA techniques also indicate hydrogen-rich structure showing greater mass loss. One gram of lithium borohydride sample released 1423ml of hydrogen with Ni catalyst while NiO caused 1972.94ml of hydrogen gas desorption, equaling to 90% of the theoretical yield of commercial LiBH4. Indicating that, hydrogen of water can be obtained by either Ni or NiO catalysts.

Suggested Citation

  • Çakanyıldırım, Çetin & Gürü, Metin, 2008. "Processing of LiBH4 from its elements by ball milling method," Renewable Energy, Elsevier, vol. 33(11), pages 2388-2392.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2388-2392
    DOI: 10.1016/j.renene.2008.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsunaga, T. & Buchter, F. & Miwa, K. & Towata, S. & Orimo, S. & Züttel, A., 2008. "Magnesium borohydride: A new hydrogen storage material," Renewable Energy, Elsevier, vol. 33(2), pages 193-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    2. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Çakanyıldırım, Çetin & Gürü, Metin, 2009. "Production of NaBH4 and hydrogen release with catalyst," Renewable Energy, Elsevier, vol. 34(11), pages 2362-2365.
    4. Nathalie Sick & Matthias Blug & Jens Leker, 2014. "The Influence of Raw Material Prices on the Development of Hydrogen Storage Materials: The Case of Metal Hydrides," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 735-760, December.
    5. Çakanyıldırım, Çetin & Gürü, Metin, 2010. "Supported CoCl2 catalyst for NaBH4 dehydrogenation," Renewable Energy, Elsevier, vol. 35(4), pages 839-844.
    6. Olena Zavorotynska & Stefano Deledda & Jenny G. Vitillo & Ivan Saldan & Matylda N. Guzik & Marcello Baricco & John C. Walmsley & Jiri Muller & Bjørn C. Hauback, 2015. "Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride," Energies, MDPI, vol. 8(9), pages 1-18, August.
    7. Hai-Wen Li & Yigang Yan & Shin-ichi Orimo & Andreas Züttel & Craig M. Jensen, 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage," Energies, MDPI, vol. 4(1), pages 1-30, January.
    8. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg," Renewable Energy, Elsevier, vol. 188(C), pages 411-424.
    9. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2388-2392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.