Possible future scenarios for atmospheric concentration of greenhouse gases: A simplified thermodynamic approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2009.03.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Lingen & Zhang, Wanli & Sun, Fengrui, 2007. "Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles," Applied Energy, Elsevier, vol. 84(5), pages 512-525, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
- Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
- Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
- Du, Jianying & Fu, Tong & Hu, Cong & Su, Shanhe & Chen, Jincan, 2020. "Entropy analyses of electronic devices with different energy selective electron tunnels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
- de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
- Jansen, E. & Bello-Ochende, T. & Meyer, J.P., 2015. "Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output," Energy, Elsevier, vol. 86(C), pages 737-748.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
- Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
- Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.
- Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
- Yi, Liqi & Li, Tao & Zhang, Ting, 2021. "Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio," Energy, Elsevier, vol. 218(C).
- Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
- Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
- Zhu, Jianqin & Wang, Kai & Wu, Hongwei & Wang, Dunjin & Du, Juan & Olabi, A.G., 2015. "Experimental investigation on the energy and exergy performance of a coiled tube solar receiver," Applied Energy, Elsevier, vol. 156(C), pages 519-527.
- Açıkkalp, Emin, 2015. "Exergetic sustainability evaluation of irreversible Carnot refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 311-320.
- Faustino Moreno-Gamboa & Ana Escudero-Atehortua & César Nieto-Londoño, 2022. "Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
- Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
- Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
- Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
- Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
More about this item
Keywords
Greenhouse gases; Thermoeconomic optimization; Endoreversible heat engines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2344-2352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.