IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i9p1565-1580.html
   My bibliography  Save this article

Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode

Author

Listed:
  • Singh, R.N.
  • Singh, S.P.
  • Pathak, B.S.

Abstract

A naturally aspirated multi cylinder diesel genset (DG) was operated successfully with mixed fuels (fossil-diesel (FD), refined rice bran oil (RRBO) and producer gas from a wood gasifier). Performance of DG set in FD, dual fuel mode (FD+RRBO in different proportion and FD+producer gas) and mixed fuels mode (with preheated blend of 75% RRBO+FD and producer gas) at different engine load conditions are presented in this paper. Performance of DG was evaluated in terms of specific energy consumption (SEC), brake thermal efficiency, exhaust gas temperature and exhaust gas composition. Study revealed that blends containing up to 75% RRBO with FD could be used as engine fuel without any adverse effect on the engine. The blend of RRBO and FD was preheated to 60°C before use in the compression ignition (CI) engine. In general, exhaust gas temperature and SEC increased in all the three modes compared to FD. However, break thermal efficiency decreased. It may be due to lower calorific value of RRBO and producer gas.

Suggested Citation

  • Singh, R.N. & Singh, S.P. & Pathak, B.S., 2007. "Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode," Renewable Energy, Elsevier, vol. 32(9), pages 1565-1580.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:9:p:1565-1580
    DOI: 10.1016/j.renene.2006.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106001789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
    2. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    3. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    4. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    5. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
    6. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
    7. R. Sasikumar & G. Sankaranarayanan, 2019. "A Study Of Emission & Performance Characteristics Of Diesel Engine Run By Dual Fuel (Bio Diesel + Acetylene Gas)," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 104-108, March.
    8. Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
    9. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    10. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    11. Banapurmath, N.R. & Tewari, P.G. & Yaliwal, V.S. & Kambalimath, Satish & Basavarajappa, Y.H., 2009. "Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction," Renewable Energy, Elsevier, vol. 34(7), pages 1877-1884.
    12. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    13. Sushrut S. Halewadimath & Nagaraj R. Banapurmath & V. S. Yaliwal & V. N. Gaitonde & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan, 2023. "Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    14. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:9:p:1565-1580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.