IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i12p2085-2095.html
   My bibliography  Save this article

Effects of combined heat transfer on the thermo-economic performance of irreversible solar-driven heat engines

Author

Listed:
  • Ust, Yasin

Abstract

A thermo-economic performance analysis and optimization has been carried out for an irrversible solar-driven heat engine with losses due to heat transfer across finite temperature differences, heat leak and internal irreversibilities. In the considered heat engine model, heat transfer from the hot reservoir is assumed to be simultaneous radiation and convection mode and the heat transfer to the cold reservoir is assumed to be convection mode. The effects of the technical and economical parameters on the thermo-economic performance have been investigated in order to see the collective effects of the radiation and convection modes of heat transfer. Also the optimal performance parameters of the heat engine, such as the thermal efficiency, temperatures of the working fluid and the ratio of heat transfer areas have been discussed in detail.

Suggested Citation

  • Ust, Yasin, 2007. "Effects of combined heat transfer on the thermo-economic performance of irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 32(12), pages 2085-2095.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2085-2095
    DOI: 10.1016/j.renene.2006.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106003235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sogut, Oguz Salim & Durmayaz, Ahmet, 2005. "Performance optimization of a solar driven heat engine with finite-rate heat transfer," Renewable Energy, Elsevier, vol. 30(9), pages 1329-1344.
    2. Sahin, Bahri & Ust, Yasin & Yilmaz, Tamer & Akcay, Ismail Hakki, 2006. "Thermoeconomic analysis of a solar driven heat engine," Renewable Energy, Elsevier, vol. 31(7), pages 1033-1042.
    3. Göktun, S. & Özkaynak, S. & Yavuz, H., 1993. "Design parameters of a radiative heat engine," Energy, Elsevier, vol. 18(6), pages 651-655.
    4. Yilmaz, Tamer & Ust, Yasin & Erdil, Ahmet, 2006. "Optimum operating conditions of irreversible solar driven heat engines," Renewable Energy, Elsevier, vol. 31(9), pages 1333-1342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    2. Wu, Lanmei & Lin, Guoxing & Chen, Jincan, 2010. "Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses," Renewable Energy, Elsevier, vol. 35(1), pages 95-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim, 2017. "A comparative thermo-ecological performance analysis of generalized irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 113(C), pages 1242-1249.
    2. Wu, Lanmei & Lin, Guoxing & Chen, Jincan, 2010. "Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses," Renewable Energy, Elsevier, vol. 35(1), pages 95-100.
    3. Yilmaz, Tamer & Ust, Yasin & Erdil, Ahmet, 2006. "Optimum operating conditions of irreversible solar driven heat engines," Renewable Energy, Elsevier, vol. 31(9), pages 1333-1342.
    4. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    5. Sahin, Bahri & Ust, Yasin & Yilmaz, Tamer & Akcay, Ismail Hakki, 2006. "Thermoeconomic analysis of a solar driven heat engine," Renewable Energy, Elsevier, vol. 31(7), pages 1033-1042.
    6. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    7. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    8. Sogut, Oguz Salim & Durmayaz, Ahmet, 2005. "Performance optimization of a solar driven heat engine with finite-rate heat transfer," Renewable Energy, Elsevier, vol. 30(9), pages 1329-1344.
    9. Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
    10. Zhang, Yue & Lin, Bihong & Chen, Jincan, 2007. "Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency," Renewable Energy, Elsevier, vol. 32(5), pages 856-867.
    11. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
    12. Hsin-Yi Lai & Yi-Ting Li & Yen-Hsin Chan, 2021. "Efficiency Enhancement on Hybrid Power System Composed of Irreversible Solid Oxide Fuel Cell and Stirling Engine by Finite Time Thermodynamics," Energies, MDPI, vol. 14(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2085-2095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.