Effects of combined heat transfer on the thermo-economic performance of irreversible solar-driven heat engines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2006.11.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sogut, Oguz Salim & Durmayaz, Ahmet, 2005. "Performance optimization of a solar driven heat engine with finite-rate heat transfer," Renewable Energy, Elsevier, vol. 30(9), pages 1329-1344.
- Sahin, Bahri & Ust, Yasin & Yilmaz, Tamer & Akcay, Ismail Hakki, 2006. "Thermoeconomic analysis of a solar driven heat engine," Renewable Energy, Elsevier, vol. 31(7), pages 1033-1042.
- Göktun, S. & Özkaynak, S. & Yavuz, H., 1993. "Design parameters of a radiative heat engine," Energy, Elsevier, vol. 18(6), pages 651-655.
- Yilmaz, Tamer & Ust, Yasin & Erdil, Ahmet, 2006. "Optimum operating conditions of irreversible solar driven heat engines," Renewable Energy, Elsevier, vol. 31(9), pages 1333-1342.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
- Wu, Lanmei & Lin, Guoxing & Chen, Jincan, 2010. "Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses," Renewable Energy, Elsevier, vol. 35(1), pages 95-100.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim, 2017. "A comparative thermo-ecological performance analysis of generalized irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 113(C), pages 1242-1249.
- Wu, Lanmei & Lin, Guoxing & Chen, Jincan, 2010. "Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses," Renewable Energy, Elsevier, vol. 35(1), pages 95-100.
- Yilmaz, Tamer & Ust, Yasin & Erdil, Ahmet, 2006. "Optimum operating conditions of irreversible solar driven heat engines," Renewable Energy, Elsevier, vol. 31(9), pages 1333-1342.
- Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
- Sahin, Bahri & Ust, Yasin & Yilmaz, Tamer & Akcay, Ismail Hakki, 2006. "Thermoeconomic analysis of a solar driven heat engine," Renewable Energy, Elsevier, vol. 31(7), pages 1033-1042.
- Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
- Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
- Sogut, Oguz Salim & Durmayaz, Ahmet, 2005. "Performance optimization of a solar driven heat engine with finite-rate heat transfer," Renewable Energy, Elsevier, vol. 30(9), pages 1329-1344.
- Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
- Zhang, Yue & Lin, Bihong & Chen, Jincan, 2007. "Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency," Renewable Energy, Elsevier, vol. 32(5), pages 856-867.
- Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
- Hsin-Yi Lai & Yi-Ting Li & Yen-Hsin Chan, 2021. "Efficiency Enhancement on Hybrid Power System Composed of Irreversible Solid Oxide Fuel Cell and Stirling Engine by Finite Time Thermodynamics," Energies, MDPI, vol. 14(4), pages 1-14, February.
More about this item
Keywords
Irreversible; Optimization; Thermo-economic performance; Solar-driven heat engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2085-2095. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.