IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v18y1993i6p651-655.html
   My bibliography  Save this article

Design parameters of a radiative heat engine

Author

Listed:
  • Göktun, S.
  • Özkaynak, S.
  • Yavuz, H.

Abstract

By employing an endoreversible heat-engine model, the design parameters of a heat engine operating under radiative heat-transfer conditions were examined to find the maximum power output. It was found that the ratio of the cold to the hot reservoir temperature must be less than 0.2 for an optimal design. Increasing the heat-transfer area of the cold side rather than that of the hot side improves the thermal efficiency. When the temperature ratio is greater than 0.6, the efficiency of such a cycle approaches that of Curzon and Ahlborn.

Suggested Citation

  • Göktun, S. & Özkaynak, S. & Yavuz, H., 1993. "Design parameters of a radiative heat engine," Energy, Elsevier, vol. 18(6), pages 651-655.
  • Handle: RePEc:eee:energy:v:18:y:1993:i:6:p:651-655
    DOI: 10.1016/0360-5442(93)90043-D
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429390043D
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(93)90043-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    2. Ust, Yasin, 2007. "Effects of combined heat transfer on the thermo-economic performance of irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 32(12), pages 2085-2095.
    3. Sogut, Oguz Salim & Durmayaz, Ahmet, 2005. "Performance optimization of a solar driven heat engine with finite-rate heat transfer," Renewable Energy, Elsevier, vol. 30(9), pages 1329-1344.
    4. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    5. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim, 2017. "A comparative thermo-ecological performance analysis of generalized irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 113(C), pages 1242-1249.
    6. Sahin, Bahri & Ust, Yasin & Yilmaz, Tamer & Akcay, Ismail Hakki, 2006. "Thermoeconomic analysis of a solar driven heat engine," Renewable Energy, Elsevier, vol. 31(7), pages 1033-1042.
    7. Yilmaz, Tamer & Ust, Yasin & Erdil, Ahmet, 2006. "Optimum operating conditions of irreversible solar driven heat engines," Renewable Energy, Elsevier, vol. 31(9), pages 1333-1342.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:18:y:1993:i:6:p:651-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.