IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i3p413-420.html
   My bibliography  Save this article

Previsional estimation of the energy output of windgenerators

Author

Listed:
  • Pallabazzer, Rodolfo

Abstract

This paper illustrates a simple method for evaluating the energy output of windgenerators of known main characteristics in a site of known wind typology. The method is based on the matching of a model of the WECS with the Weibull model of wind regime. To enter the method the following quantities must be known: Weibull shape parameter and mean wind speed, turbine diameter, hub height, cut-in and nominal wind speeds and nominal power. With these quantities one can enter a diagram that gives the value of the plant utilisation factor for any specific siting. An example shows how to make a choice among several models of small size.

Suggested Citation

  • Pallabazzer, Rodolfo, 2004. "Previsional estimation of the energy output of windgenerators," Renewable Energy, Elsevier, vol. 29(3), pages 413-420.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:3:p:413-420
    DOI: 10.1016/S0960-1481(03)00197-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103001976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00197-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blonbou, Ruddy, 2011. "Very short-term wind power forecasting with neural networks and adaptive Bayesian learning," Renewable Energy, Elsevier, vol. 36(3), pages 1118-1124.
    2. Jafarian, M. & Ranjbar, A.M., 2010. "Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine," Renewable Energy, Elsevier, vol. 35(9), pages 2008-2014.
    3. Masseran, Nurulkamal, 2015. "Evaluating wind power density models and their statistical properties," Energy, Elsevier, vol. 84(C), pages 533-541.
    4. Hu, Ssu-yuan & Cheng, Jung-ho, 2007. "Performance evaluation of pairing between sites and wind turbines," Renewable Energy, Elsevier, vol. 32(11), pages 1934-1947.
    5. Chang, Tsang-Jung & Tu, Yi-Long, 2007. "Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan," Renewable Energy, Elsevier, vol. 32(12), pages 1999-2010.
    6. Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
    7. Jean Souza dos Reis & Nícolas de Assis Bose & Ana Cleide Bezerra Amorim & Vanessa de Almeida Dantas & Luciano Andre Cruz Bezerra & Leonardo de Lima Oliveira & Samira de Azevedo Emiliavaca & Maria de F, 2023. "Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data," Energies, MDPI, vol. 16(22), pages 1-27, November.
    8. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    9. Villanueva, D. & Feijóo, A., 2010. "Wind power distributions: A review of their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1490-1495, June.
    10. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    11. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    12. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:3:p:413-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.