IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i3p275-292.html
   My bibliography  Save this article

A pre-cooling Munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels

Author

Listed:
  • Zhang, L.Z
  • Niu, J.L

Abstract

Desiccant cooling is efficient in latent cooling, whereas chilled-ceiling is efficient for sensible cooling. In this paper, a new desiccant cooling system, a pre-cooling Munters environmental control (PMEC) cycle is proposed, which combines with chilled-ceiling panels. The mathematical model of the system is provided and used to predict the system performance under South-east China weather conditions using hour-by-hour calculations. The results indicate that chilled-ceiling combined with desiccant cooling could save up to 40% of primary energy consumption, in comparison with a conventional constant volume all-air system. More interestingly, more than 99% of annual operating hours for desiccant regeneration could be accomplished by low-grade heat of less than 80 °C with the new cycle, while 30% annual operating hours need heat higher than 80 °C with the old MEC cycle.

Suggested Citation

  • Zhang, L.Z & Niu, J.L, 2003. "A pre-cooling Munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels," Energy, Elsevier, vol. 28(3), pages 275-292.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:3:p:275-292
    DOI: 10.1016/S0360-5442(02)00114-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202001147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00114-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, R.R. & Hwang, C.C. & Dougall, R.S., 1994. "Modeling of a solar-assisted desiccant air conditioner for a residential building," Energy, Elsevier, vol. 19(6), pages 679-691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mandegari, M. & Pahlavanzadeh, H., 2009. "Introduction of a new definition for effectiveness of desiccant wheels," Energy, Elsevier, vol. 34(6), pages 797-803.
    2. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    3. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    4. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    5. Zouaoui, Ahlem & Zili-Ghedira, Leila & Ben Nasrallah, Sassi, 2016. "Open solid desiccant cooling air systems: A review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 889-917.
    6. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    7. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    8. Safizadeh, M. Reza & Morgenstern, Alexander & Bongs, Constanze & Henning, Hans-Martin & Luther, Joachim, 2016. "Optimization of a heat assisted air-conditioning system comprising membrane and desiccant technologies for applications in tropical climates," Energy, Elsevier, vol. 101(C), pages 52-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    2. Badescu, Viorel, 2003. "Time dependent model of a complex PV water pumping system," Renewable Energy, Elsevier, vol. 28(4), pages 543-560.
    3. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    4. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Badescu, Viorel, 2003. "Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump," Energy, Elsevier, vol. 28(12), pages 1165-1181.
    6. Badescu, Viorel, 2002. "Model of a space heating system integrating a heat pump, photothermal collectors and solar cells," Renewable Energy, Elsevier, vol. 27(4), pages 489-505.
    7. Mujahid Rafique, M. & Gandhidasan, P. & Rehman, Shafiqur & Al-Hadhrami, Luai M., 2015. "A review on desiccant based evaporative cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 145-159.
    8. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Proposal of a control strategy for desiccant air-conditioning systems," Energy, Elsevier, vol. 36(9), pages 5666-5676.
    9. Zhiyong Yang & Yiping Wang & Li Zhu, 2011. "Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors," Energies, MDPI, vol. 4(3), pages 1-13, March.
    10. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:3:p:275-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.