IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v23y2001i2p167-179.html
   My bibliography  Save this article

Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material

Author

Listed:
  • Nahar, N.M

Abstract

A double reflector hot box solar cooker with a Transparent Insulation Material (TIM) has been designed, fabricated, tested and the performance compared with a single reflector hot box solar cooker without TIM. A 40 mm thick honeycomb made of polycarbonate capillaries was encapsulated between two glazing sheets of the cooker to minimise convective losses from the window so that even during an extremely cold but sunny day two meals can be prepared, which is not possible in a hot box solar cooker without TIM. The use of one more reflectors resulted in an avoidance of tracking towards sun for 3 h so that cooking operations could be performed unattended, as compared to a hot box solar cooker where tracking ahead of the sun is required every hour. The efficiencies were 30.5% and 24.5% for cookers with and without a TIM respectively, during the winter season at Jodhpur. The energy saving by use of a solar cooker with TIM has been estimated to be 1485.0 MJ of fuel equivalent per year. The payback period varies between 1.66 and 4.23 y depending upon the fuel it replaces, and is in increasing order with respect to the following fuels: electricity, firewood, coal, LPG and kerosene. The estimated life is about 15 y. Therefore, the use of a solar cooker is economical. The double reflector hot box solar cooker with TIM will be a boon in popularising solar cookers in developing countries.

Suggested Citation

  • Nahar, N.M, 2001. "Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material," Renewable Energy, Elsevier, vol. 23(2), pages 167-179.
  • Handle: RePEc:eee:renene:v:23:y:2001:i:2:p:167-179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148100001786
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahavar, S. & Rajawat, P. & Punia, R.C. & Sengar, N. & Dashora, P., 2015. "Evaluating the optimum load range for box-type solar cookers," Renewable Energy, Elsevier, vol. 74(C), pages 187-194.
    2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    3. Harmim, A. & Belhamel, M. & Boukar, M. & Amar, M., 2010. "Experimental investigation of a box-type solar cooker with a finned absorber plate," Energy, Elsevier, vol. 35(9), pages 3799-3802.
    4. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    5. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    6. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.
    7. Arenas, José M., 2007. "Design, development and testing of a portable parabolic solar kitchen," Renewable Energy, Elsevier, vol. 32(2), pages 257-266.
    8. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    9. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    10. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    11. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    12. Mirdha, U.S. & Dhariwal, S.R., 2008. "Design optimization of solar cooker," Renewable Energy, Elsevier, vol. 33(3), pages 530-544.
    13. Saxena, Abhishek & Cuce, Erdem & Tiwari, G.N. & Kumar, Avnish, 2020. "Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research," Energy, Elsevier, vol. 206(C).
    14. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    16. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    17. El-Sebaii, A.A. & Ibrahim, A., 2005. "Experimental testing of a box-type solar cooker using the standard procedure of cooking power," Renewable Energy, Elsevier, vol. 30(12), pages 1861-1871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:23:y:2001:i:2:p:167-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.