IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019062.html
   My bibliography  Save this article

Validation through internal flow physics of response surface methodology optimized mixed flow pump as turbine

Author

Listed:
  • Zhou, Xu
  • Yang, Sun Sheng
  • Singh, Punit
  • Zhou, Ling

Abstract

In order to determine the optimal working efficiency of mixed flow pumps as turbine (MF-PAT) under a design condition of 10m3kw, this study takes the number of blades, blade wrap angle, impeller outer diameter, and impeller inlet width as design variables. Based on the center combination design method, experimental scheme design is carried out, and the head, shaft power, and efficiency of the turbine are used as evaluation indicators. A response surface model is constructed for optimization analysis, and the optimal geometric parameter combination of the impeller for MF-PAT is determined. For MF-PAT with forward-curved blade impeller in this paper, the optimal parameter combination is recommended as blade number Z = 6, blade wrap angle α = 47°, impeller outer diameter D2 = 140 mm and impeller inlet width b2 = 34 mm. The results show that compared with the original scheme, its efficiency has increased by 7.8 %. The established response surface model can reflect the relationship between evaluation indicators and design variables, and can be used for optimizing the geometric parameters of MF-PAT impellers. It can effectively enhance the blade's constraint ability on liquid flow, reduce hydraulic losses, and improve the performance of MF-PAT. Apply the ns-ds methodology for this and future mixed flow optimized pumps as turbines.

Suggested Citation

  • Zhou, Xu & Yang, Sun Sheng & Singh, Punit & Zhou, Ling, 2024. "Validation through internal flow physics of response surface methodology optimized mixed flow pump as turbine," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019062
    DOI: 10.1016/j.renene.2024.121838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.