IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019050.html
   My bibliography  Save this article

Synergistic solar electricity-water generation through an integration of semitransparent solar cells and multistage interfacial desalination

Author

Listed:
  • Chen, Yushi
  • Zeng, Hanxuan
  • Peng, Hao
  • Luo, Zhouyang
  • Bao, Hua

Abstract

Energy shortage and freshwater scarcity are critical challenges for the sustainable development of the society. The photovoltaic-thermal (PVT) hybrid system offers a promising strategy by harnessing solar energy for electricity and water cogeneration. However, existing systems suffer from relatively low efficiency due to incomplete solar spectrum utilization. To address this, we propose a novel PVT integrated system that combines semi-transparent solar cells and multistage interfacial stills to maximize solar spectrum utilization, allowing for efficient electricity and freshwater co-production. Experimental results demonstrate a record-high solar-to-vapor efficiency of 210 % with a production rate of 3.17 L m−2 h−1 under one-sun, while maintaining an uncompromised electrical efficiency of 19.57 %. Furthermore, we employ a verified theoretical framework to provide optimized strategies for concurrent enhancement of electricity-water production, by improving internal heat and mass transfer and effectively reducing the thickness of the interstage air gap. Moreover, we introduce a non-contact model for system structure optimization proposed to match the high transmittance of solar cells. This work realizes full solar spectrum utilization to cogenerate electricity and freshwater, offering optimized strategies from the thermal perspective for future research.

Suggested Citation

  • Chen, Yushi & Zeng, Hanxuan & Peng, Hao & Luo, Zhouyang & Bao, Hua, 2024. "Synergistic solar electricity-water generation through an integration of semitransparent solar cells and multistage interfacial desalination," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019050
    DOI: 10.1016/j.renene.2024.121837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    2. Eliodoro Chiavazzo & Matteo Morciano & Francesca Viglino & Matteo Fasano & Pietro Asinari, 2018. "Passive solar high-yield seawater desalination by modular and low-cost distillation," Nature Sustainability, Nature, vol. 1(12), pages 763-772, December.
    3. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    4. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
    6. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Wenbin Wang & Yusuf Shi & Chenlin Zhang & Seunghyun Hong & Le Shi & Jian Chang & Renyuan Li & Yong Jin & Chisiang Ong & Sifei Zhuo & Peng Wang, 2019. "Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    9. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    10. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    11. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    2. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    3. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    6. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    9. Zhao, Xiaobo & Han, Xinyue & Yao, Yiping & Huang, Ju, 2022. "Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems," Energy, Elsevier, vol. 238(PC).
    10. Han, Jingyang & Li, Haoyue & Li, Yong & Hou, Shiqi, 2023. "Spectral splitting solar energy transfer in small-diameter multimode optical fiber based on two-stage concentration," Renewable Energy, Elsevier, vol. 207(C), pages 47-59.
    11. Baoping Zhang & Pak Wai Wong & Jiaxin Guo & Yongsen Zhou & Yang Wang & Jiawei Sun & Mengnan Jiang & Zuankai Wang & Alicia Kyoungjin An, 2022. "Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
    13. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Xiao, Yang & Tian, Wenshuang & Yu, Linfeng & Chen, Meijie & Zheng, Xiong & Qin, Guangzhao, 2024. "Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters," Energy, Elsevier, vol. 289(C).
    15. Hao, Xinyue & Zhou, Yifan & Wang, Qin & Gao, Neng & Wang, Xuehui & Chen, Guangming, 2023. "Prospective study of a novel heat pump system with solar energy spectral beam splitting," Renewable Energy, Elsevier, vol. 217(C).
    16. Han, Xinyue & Ding, Fan & Huang, Ju & Zhao, Xiaobo, 2023. "Hybrid nanofluid filtered concentrating photovoltaic/thermal-direct contact membrane distillation system for co-production of electricity and freshwater," Energy, Elsevier, vol. 263(PD).
    17. Han, Xinyue & Zhao, Xiaobo & Huang, Ju & Qu, Jian, 2022. "Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 188(C), pages 573-587.
    18. Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    20. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.