Passive solar high-yield seawater desalination by modular and low-cost distillation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41893-018-0186-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Primož Poredoš & Jintong Gao & He Shan & Jie Yu & Zhao Shao & Zhenyuan Xu & Ruzhu Wang, 2024. "Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Baoping Zhang & Pak Wai Wong & Jiaxin Guo & Yongsen Zhou & Yang Wang & Jiawei Sun & Mengnan Jiang & Zuankai Wang & Alicia Kyoungjin An, 2022. "Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).
- Ma, Qiuming & Xu, Zhenyuan & Wang, Ruzhu & Poredoš, Primož, 2022. "Distributed vacuum membrane distillation driven by direct-solar heating at ultra-low temperature," Energy, Elsevier, vol. 239(PA).
- Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Abbas Sahi Shareef & Hayder Jabbar Kurji & Hassan Abdulameer Matrood, 2021. "A Review of Using Phase Change Materials to Improve the Productivity of a Solar Still," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(8), pages 176-180, August.
- Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
- De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
- Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
- Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Mohammad Hossein Ahmadi & Mohammad Dehghani Madvar & Milad Sadeghzadeh & Mohammad Hossein Rezaei & Manuel Herrera & Shahaboddin Shamshirband, 2019. "Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models," Energies, MDPI, vol. 12(10), pages 1-20, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:12:d:10.1038_s41893-018-0186-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.