IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018172.html
   My bibliography  Save this article

Conceptual design of a novel sustainable hybrid renewable energy system based on biogas/molten carbonate fuel cell/water desalination for a building energy supply

Author

Listed:
  • Zahedi, Alireza
  • Rasmi, Elnaz
  • Ahmadi, Abolfazl
  • Kanani, Behzad

Abstract

To ensure an independent and sustainable energy supply, including electricity, drinking water, hot water, heating, and cooling for a 4-floor building in Bandar Dayyer, located in the south of Iran, a novel hybrid renewable energy system consisting of biogas/molten carbonate fuel cell/water desalination was proposed. With a hydraulic retention time of 15 days and a temperature of 55 °C in the digester section, the daily methane production reached 16,000 L. A power output of 98 kW was achieved with the fuel cell operation at a temperature of 650 °C. Additionally, 1137.4 kg of fresh water was produced daily to meet the consumption needs and the reformer's water requirements. The amounts of CO2 produced in the combustion chamber and the fuel cell were 43.93 and 23.3 kg/h, respectively. The gas composition analysis indicated a CO2 output of 4 %. The hybrid system's overall energy and exergy efficiency were 54 % and 52.58 %, respectively. This system demonstrates outstanding performance as a sustainable renewable energy system, providing reduced waste production and electricity, drinking water, hot water, heating, and cooling while exhibiting favorable environmental impacts with limited greenhouse gas emissions.

Suggested Citation

  • Zahedi, Alireza & Rasmi, Elnaz & Ahmadi, Abolfazl & Kanani, Behzad, 2024. "Conceptual design of a novel sustainable hybrid renewable energy system based on biogas/molten carbonate fuel cell/water desalination for a building energy supply," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018172
    DOI: 10.1016/j.renene.2024.121749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    2. Nazari, Ali & Soltani, M. & Hosseinpour, Morteza & Alharbi, Walied & Raahemifar, Kaamran, 2021. "Integrated anaerobic co-digestion of municipal organic waste to biogas using geothermal and CHP plants: A comprehensive analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    4. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    5. Hongyu Huang & Jun Li & Zhaohong He & Tao Zeng & Noriyuki Kobayashi & Mitsuhiro Kubota, 2015. "Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas," Energies, MDPI, vol. 8(6), pages 1-17, June.
    6. Han, Yongming & Du, Zilan & Hu, Xuan & Li, Yeqing & Cai, Di & Fan, Jinzhen & Geng, Zhiqiang, 2023. "Production prediction modeling of food waste anaerobic digestion for resources saving based on SMOTE-LSTM," Applied Energy, Elsevier, vol. 352(C).
    7. Verda, Vittorio & Sciacovelli, Adriano, 2012. "Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester," Energy, Elsevier, vol. 47(1), pages 150-157.
    8. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
    9. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    2. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    3. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    4. Konstantina Peloriadi & Petros Iliadis & Panagiotis Boutikos & Konstantinos Atsonios & Panagiotis Grammelis & Aristeidis Nikolopoulos, 2022. "Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study," Energies, MDPI, vol. 15(11), pages 1-20, May.
    5. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    6. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    7. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    8. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    9. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    11. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    12. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    14. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    15. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    16. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
    18. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2015. "Molten carbonate fuel cell: An experimental analysis of a 1kW system fed by landfill gas," Applied Energy, Elsevier, vol. 140(C), pages 146-160.
    19. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    20. Christos Argyropoulos & Theodoros Petrakis & Lito-Aspasia Roditi & Angeliki Kavga, 2023. "Opportunities and Potential for Energy Utilization from Agricultural and Livestock Residues in the Region of Thessaly," Sustainability, MDPI, vol. 15(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.