Author
Listed:
- Abid, Khizar
- Velasquez, Andres Felipe Baena
- Sharma, Aditya
- McSheridan, Alex Neil
- Srivastava, Saket
- Teodoriu, Catalin
Abstract
Many countries have set the goal of net zero carbon emission and are diverting their energy source towards renewables. In that respect, geothermal energy is a continuous renewable energy source that is not affected by any metrological conditions. However, geothermal energy is not used to its full potential, and at present, less than 1 % of renewable energy is produced by geothermal sources. One of the biggest reasons that hinder its adoption is the cost of drilling and completion associated with the geothermal well, which almost takes 50 % of the project budget. Therefore, it is important that, where possible (with conducive geothermal conditions), conventional oil and gas wells that are old or temporarily suspended should be retrofitted into geothermal wells. In this way, the initial cost of the geothermal project can be reduced, which is mainly due to the drilling operations. However, before repurposing old retired wells, conducting a proper risk assessment is important to avoid any well integrity issues in the long run. Therefore, this paper presents a concept of accessing the risk using Feature, Event, and Process (FEP) that have been integrated with the interaction matrix, incident potential matrix (IPM), and cause-effect plot diagram. This risk assessment technique identifies the well components that might be susceptible to failure, and remedial work should be conducted on such elements. However, geothermal wells have no specific FEPs; hence, the FEPs from CCS wells have been used, which have their limitation when used for geothermal systems. Nonetheless, to show the feasibility of this approach in assessing the risk, two case studies of the fictitious tubingless geothermal well are presented in this paper.
Suggested Citation
Abid, Khizar & Velasquez, Andres Felipe Baena & Sharma, Aditya & McSheridan, Alex Neil & Srivastava, Saket & Teodoriu, Catalin, 2024.
"Risk assessment through feature, event, and process for repurposing suspended oil and gas wells for geothermal purposes,"
Renewable Energy, Elsevier, vol. 237(PC).
Handle:
RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017889
DOI: 10.1016/j.renene.2024.121720
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017889. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.