IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017415.html
   My bibliography  Save this article

Enhancing bioenergy and feed production in Southern Thailand: An approach through Leucaena cultivation and hydrothermal carbonization

Author

Listed:
  • Pengpit, Pimpaporn
  • Chotchutima, Songyos
  • Chaiprapat, Sumate
  • Yoyrurob, Sucheewan
  • Charnnok, Boonya

Abstract

This study addresses sustainability challenges in Southern Thailand, particularly the scarcity of biomass fuel and animal feed. It investigates the integration of Leucaena leucocephala cultivation with hydrothermal carbonization. The research compares the biomass yield and economic feasibility of growing Leucaena as a sole crop versus intercropping it with Para rubber trees. Sole cropping Leucaena produces higher biomass yields and is more economically viable. The wood stem of Leucaena is competitive with other biomass fuels used in local power plants, while its leaves, with over 14 % protein content, meet local animal feed market standards. Additionally, branches, which constitute 15.15 %–30.58 % of the total biomass, are usually left as residue but can be used for hydrochar production. The study examines the effects of temperature (235 °C and 265 °C) and retention time (1, 2, and 3 h) on hydrochar properties. Optimal condition (265 °C for 1 h) produces hydrochar with high heating value and energy yield. Using these branches for hydrochar can significantly boost total revenue, with hydrochar contributing 54.9 % to overall revenue (4522.00 USD/ha). Integrating Leucaena cultivation with hydrothermal carbonization offers a sustainable solution, enhancing revenue, supporting local energy and feed needs, and promoting environmental sustainability.

Suggested Citation

  • Pengpit, Pimpaporn & Chotchutima, Songyos & Chaiprapat, Sumate & Yoyrurob, Sucheewan & Charnnok, Boonya, 2024. "Enhancing bioenergy and feed production in Southern Thailand: An approach through Leucaena cultivation and hydrothermal carbonization," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017415
    DOI: 10.1016/j.renene.2024.121673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simeon Olatayo Jekayinfa & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2020. "An Assessment of Potential Resources for Biomass Energy in Nigeria," Resources, MDPI, vol. 9(8), pages 1-43, August.
    2. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
    2. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
    3. Julija Konstantinavičienė, 2023. "Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    4. Christian Barika Igbeghe & Tamás Mizik & Zoltán Gabnai & Attila Bai, 2023. "Trends and Characterization of Primary Energy Sources by Energy and Food Prices," Energies, MDPI, vol. 16(7), pages 1-18, March.
    5. Jarmila Zimmermannova & Richard Smilnak & Michaela Perunova & Omar Ameir, 2022. "Coal or Biomass? Case Study of Consumption Behaviour of Households in the Czech Republic," Energies, MDPI, vol. 16(1), pages 1-17, December.
    6. Edeye Ejaita & Emmanuel E. Udensi, 2024. "Assessment of the Geothermal Source Potential Using Aero Radiometric Data in Parts of South-West and South-South, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 840-850, November.
    7. Guangwei Wang & Renguo Li & Jiayun Dan & Xiang Yuan & Jiugang Shao & Jiawen Liu & Kun Xu & Tao Li & Xiaojun Ning & Chuan Wang, 2023. "Preparation of Biomass Hydrochar and Application Analysis of Blast Furnace Injection," Energies, MDPI, vol. 16(3), pages 1-16, January.
    8. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    9. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    10. Joseph I. Orisaleye & Simeon O. Jekayinfa & Christian Dittrich & Okey F. Obi & Ralf Pecenka, 2023. "Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press," Resources, MDPI, vol. 12(1), pages 1-16, January.
    11. Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).
    12. Somoye, Oluwatoyin Abidemi, 2023. "Energy crisis and renewable energy potentials in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
    14. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    15. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    16. Amira Toumi & Natalia Politaeva & Saša Đurović & Liliya Mukhametova & Svetlana Ilyashenko, 2022. "Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana," Resources, MDPI, vol. 11(2), pages 1-13, February.
    17. Baath, Yuvraj Singh & Nikrityuk, Petr A. & Gupta, Rajender, 2022. "Experimental and numerical verifications of biochar gasification kinetics using TGA," Renewable Energy, Elsevier, vol. 185(C), pages 717-733.
    18. Flavio Borfecchia & Paola Crinò & Angelo Correnti & Anna Farneti & Luigi De Cecco & Domenica Masci & Luciano Blasi & Domenico Iantosca & Vito Pignatelli & Carla Micheli, 2020. "Assessing the Impact of Water Salinization Stress on Biomass Yield of Cardoon Bio-Energetic Crops through Remote Sensing Techniques," Resources, MDPI, vol. 9(10), pages 1-27, October.
    19. Wang Liang & Pavlina Nanou & Heather Wray & Jianliang Zhang & Ingemar Lundstrom & Stefan Lundqvist & Chuan Wang, 2022. "Feasibility Study of Bio-Sludge Hydrochar as Blast Furnace Injectant," Sustainability, MDPI, vol. 14(9), pages 1-11, May.
    20. Prince Anthony Okoro & Katie Chong & Mirjam Röder, 2024. "Bioenergy potential in Nigeria, how to advance knowledge and deployment to enable SDG 7," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.