IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016902.html
   My bibliography  Save this article

Multi-stage control design for oscillating water column-based ocean wave energy conversion system

Author

Listed:
  • Noman, Muhammad
  • Li, Guojie
  • Khan, Muhammad Waseem
  • Wang, Keyou
  • Han, Bei

Abstract

Despite the enormous global potential of ocean wave energy, it has yet to achieve a level of maturity and economic competitiveness that would result in a substantial impact. Challenges include direct integration into weak or isolated microgrids, a high proportion of uncertain marine environments, nonlinear dynamics, oscillating water column (OWC) device limitations, slower response times, unplanned power outages, power fluctuations, high capital and operational costs in ocean wave energy conversion (OWEC) systems. To this end, a new independent multi-stage design approach is proposed for the performance enhancement of an OWC-based OWEC system. Firstly, an airflow and rotational speed optimal control stage enhances power capture in the Wells turbine-based OWC plant. Secondly, compared to conventional control, the proposed permanent magnet synchronous generator control incorporates an adaptive nonlinear back-stepping control algorithm based on Lyapunov stability theory. Thirdly, introducing reconfigurable control into the conventional six-leg power converter ensures the uninterrupted operation of an OWEC system. Lastly, a model-predictive control-based energy management system is integrated with a bidirectional DC-DC converter that delivers steady power from the grid-connected OWC OWEC system. Hence, MATLAB simulations ensure the overall performance enhancement and feasibility of the OWEC system application and verify that the proposed multi-stage solution is efficient, robust, and reliable.

Suggested Citation

  • Noman, Muhammad & Li, Guojie & Khan, Muhammad Waseem & Wang, Keyou & Han, Bei, 2024. "Multi-stage control design for oscillating water column-based ocean wave energy conversion system," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016902
    DOI: 10.1016/j.renene.2024.121622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.