IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas096014812401646x.html
   My bibliography  Save this article

Downhole flow control: A key for developing enhanced geothermal systems in horizontal wells

Author

Listed:
  • Zhang, Qitao
  • Dahi Taleghani, Arash

Abstract

Field evidence indicates that only a few large fractures in enhanced geothermal systems (EGS) may dominate fluid flow and lead to the development of thermal short-circuiting. This problem would worsen in heat harvesting through horizontal wells with abundant fractures (induced or natural ones). To limit flow shortcuts that may cause early thermal breakthroughs, we propose a temperature-sensitive flow management system and explore its potential benefits during the development of EGS in horizontal wells. The proposed downhole flow management system consists of sensors for real-time temperature monitoring, and flow control devices for adjusting injection distribution in the wellbore. We evaluate the performance of such systems over 50 years of operation by numerical analysis. The results indicate that, when the proposed system is utilized, the produced fluid temperature will be increased by up to 60 K for a field-scale example. Besides, the application of the proposed flow management system can increase the cumulative heat extraction by up to 48.25 % (0.69 × 1016 J) after 50 years. The heat extraction efficiency can be improved by up to 94.16 %. During the EGS operation, it is suggested to implement multi-stage fluid control, but it is not recommended to reopen the fluid injection that has been previously shut down. Finally, the flow management system can mitigate the negative impacts of geological heterogeneities or the heterogeneity in fracture hydraulic conductivities. This paper proposes a new concept of flow management to integrate horizontal wells into efficient EGSs for power generation and heat extraction in the future.

Suggested Citation

  • Zhang, Qitao & Dahi Taleghani, Arash, 2024. "Downhole flow control: A key for developing enhanced geothermal systems in horizontal wells," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s096014812401646x
    DOI: 10.1016/j.renene.2024.121578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401646X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    2. Qitao Zhang & Wenchao Liu & Jiaxin Wei & Arash Dahi Taleghani & Hai Sun & Daobing Wang, 2022. "Numerical Simulation Study on Temporary Well Shut-In Methods in the Development of Shale Oil Reservoirs," Energies, MDPI, vol. 15(23), pages 1-24, December.
    3. McLean, Matthew L. & Espinoza, D. Nicolas, 2023. "Thermal destressing: Implications for short-circuiting in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 202(C), pages 736-755.
    4. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    5. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    6. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    7. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    2. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Liu, Yujie & Wu, Hui & Taleghani, Arash Dahi & Zhang, Kun & Zhang, Jinjiang & Yang, Ming & Zhang, Bo, 2024. "Effects of temperature-dependent viscosity on thermal drawdown-induced fracture flow channeling in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 235(C).
    4. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    5. Zhang, Yu & Zhang, Yanjun & Yu, Hai & Li, Jianming & Xie, Yangyang & Lei, Zhihong, 2020. "Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models," Renewable Energy, Elsevier, vol. 153(C), pages 564-579.
    6. McLean, Matthew L. & Espinoza, D. Nicolas & Ahmmed, Bulbul, 2024. "The impact of effective fractured rock mass properties on development of flow channeling in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 237(PB).
    7. Wang, Yang & Voskov, Denis & Khait, Mark & Saeid, Sanaz & Bruhn, David, 2021. "Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field," Renewable Energy, Elsevier, vol. 179(C), pages 641-651.
    8. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    9. Jin, Yunzhe & Zou, Liangchao & Yao, Chi & Zhou, Chuangbing & Cvetkovic, Vladimir, 2024. "Influence of shear displacement on heat transport in 3D rough-walled rock fractures," Energy, Elsevier, vol. 308(C).
    10. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    11. Chen, Yuedu & Liang, Weiguo, 2024. "The assessment of geothermal extraction efficiency for unstable alternation operation through thermal-hydro mechanical coupling simulations," Renewable Energy, Elsevier, vol. 232(C).
    12. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    13. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    14. Najafi, Fatemeh & Kazemi, Mostafa & Mostafaeipour, Ali & Mishra, Phoolenrda, 2025. "Prioritizing industrial wastes and technologies for bioenergy production: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    15. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    16. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    17. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    18. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    19. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    20. Lu, Gongda & Meguid, Mohamed, 2024. "A multiphysics simulator for stope-coupled heat exchanger operation in deep underground mines," Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s096014812401646x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.