IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4874-d1176942.html
   My bibliography  Save this article

Effects of Boundary Conditions on Performance Prediction of Deep-Buried Ground Heat Exchangers for Geothermal Energy Utilization

Author

Listed:
  • Zhendi Ma

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Siyu Qin

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yuping Zhang

    (Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China)

  • Wei-Hsin Chen

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
    Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
    Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

  • Guosheng Jia

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Chonghua Cheng

    (Shaanxi Yateer Scientific and Technological Innovation Construction Co., Ltd., Xi’an 710076, China)

  • Liwen Jin

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

An accurate prediction for deep-buried ground heat exchangers (DBGHEs) is the premise for efficient utilization of geothermal energy. Due to the complexity of the geological composition spanning thousands of meters, the configuration of boundary conditions plays a critical role in evaluating DBGHE thermal performance. This paper proposed a three-dimensional model of full-scale DBGHE involving both conductive and convective heat transfer in aquifuge and aquifer layers. The constant inlet temperature and constant heating power boundaries in the DBGHE domain, and the surface–bottom temperature and heat flux boundaries in the rock-soil domain were examined. It was found that the differences in the performance prediction caused by different DBGHE boundary conditions were closely related to the system’s operating time. The relative differences in heat extraction amount and average borehole temperature of 2000 m DBGHE caused by the two inlet boundaries on the 30th day were, respectively, 19.5% and 18.3%, while these differences on the 120th day were decreased to 8.4% and 9.9%, respectively. It was found that the constant inlet temperature boundary was more appropriate than the constant heating power condition for estimating aquifer effects on the performance of DBGHE. For the rock-soil domain, the results showed that the heat extraction amount of DBGHE under the heat flux boundary was 12.6%–13.6% higher than that under the surface–bottom temperature boundary. Particularly, when considering the velocity change of groundwater in the aquifer, the relative difference in heat extraction amount increments caused by the two types of rock-soil boundaries can reach 26.6% on the 120th day. It was also found that the thermal influence radius at the end of a heating season was hardly affected by either the DBGHE inlet or rock-soil domain boundary conditions.

Suggested Citation

  • Zhendi Ma & Siyu Qin & Yuping Zhang & Wei-Hsin Chen & Guosheng Jia & Chonghua Cheng & Liwen Jin, 2023. "Effects of Boundary Conditions on Performance Prediction of Deep-Buried Ground Heat Exchangers for Geothermal Energy Utilization," Energies, MDPI, vol. 16(13), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4874-:d:1176942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiewen Deng & Qingpeng Wei & Shi He & Mei Liang & Hui Zhang, 2020. "Simulation Analysis on the Heat Performance of Deep Borehole Heat Exchangers in Medium-Depth Geothermal Heat Pump Systems," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.
    3. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    4. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    5. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.
    6. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    7. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    8. Christopher S. Brown & Hannah Doran & Isa Kolo & David Banks & Gioia Falcone, 2023. "Investigating the Influence of Groundwater Flow and Charge Cycle Duration on Deep Borehole Heat Exchangers for Heat Extraction and Borehole Thermal Energy Storage," Energies, MDPI, vol. 16(6), pages 1-22, March.
    9. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    10. Claudio Alimonti, 2023. "Technical Performance Comparison between U-Shaped and Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(3), pages 1-16, January.
    11. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    12. Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    2. Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.
    3. Chen, Wen & Zhou, Chaohui & Huang, Xinyu & Luo, Hanbin & Luo, Yongqiang & Cheng, Nan & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Zhang, Ling, 2024. "Study on thermal radius and capacity of multiple deep borehole heat exchangers: Analytical solution, algorithm and application based on Response Factor Matrix method (RFM)," Energy, Elsevier, vol. 296(C).
    4. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    5. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    6. huajun, Wang & Yishuo, Xu & Yukun, Sun & Sumin, Zhao, 2022. "Heat extraction by deep coaxial borehole heat exchanger for clean space heating near Beijing, China: Field test, model comparison and operation pattern evaluation," Renewable Energy, Elsevier, vol. 199(C), pages 803-815.
    7. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    8. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.
    9. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    10. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    11. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    12. Zhang, Fangfang & Yu, Mingzhi & Sørensen, Bjørn R. & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2022. "Heat extraction capacity and its attenuation of deep borehole heat exchanger array," Energy, Elsevier, vol. 254(PA).
    13. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    15. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    16. Yao, Jian & Liu, Wenjie & Zhang, Lu & Tian, Binshou & Dai, Yanjun & Huang, Mingjun, 2020. "Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump," Renewable Energy, Elsevier, vol. 160(C), pages 160-175.
    17. Zheng, Jianqiao & Zhang, Yanjun & Huang, Yibin & Liu, Qiangbin & Cheng, Yuxiang & Guo, Jixiang, 2024. "Numerical investigation on heat transfer performance of the segmented cementing coaxial heat exchanger," Renewable Energy, Elsevier, vol. 220(C).
    18. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.
    19. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    20. Li, Chao & Jiang, Chao & Guan, Yanling, 2022. "An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4874-:d:1176942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.