IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6107-d448957.html
   My bibliography  Save this article

Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments

Author

Listed:
  • Theo Renaud

    (Energy and Power, Cranfield University, Cranfield MK43 0AL, UK)

  • Patrick G. Verdin

    (Energy and Power, Cranfield University, Cranfield MK43 0AL, UK)

  • Gioia Falcone

    (James Watt School of Engineering, University of Glasgow, Glasgow G13 8QQ, UK)

Abstract

Geothermal is a renewable energy source that can be untapped through various subsurface technologies. Closed geothermal well solutions, such as deep geothermal heat exchangers (DBHEs), consist of circulating a working fluid to recover the available heat, with less dependency on the local geological settings than conventional geothermal systems. This paper emphasizes a double numerical method to strengthen the assessment of DBHE performances. A computational fluid dynamics (CFD) commercial software and the 1D coupled wellbore-reservoir geothermal simulator T2Well have been used to investigate the heat transfer and fluid flow in a vertical DBHE in high geothermal gradient environments. The use of constant water properties to investigate the energy produced from DBHEs can lead to underestimating the overall heat transfer at high temperature and low mass flow rate. 2D axisymmetric CFD modelling improves the understanding of the return flow at the bottom of the DBHE, readjusting and better estimating the pressures losses commonly obtained with 1D modelling. This paper highlights the existence of convective cells located at the bottom of the DBHE internal tubing, with no significant effects due to the increase of injected water flow. Both codes are shown to constrain the numerical limitations to access the true potential of geothermal heat extraction from DBHEs in high geothermal gradient environments and demonstrate that they can be used for geothermal energy engineering applications.

Suggested Citation

  • Theo Renaud & Patrick G. Verdin & Gioia Falcone, 2020. "Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments," Energies, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6107-:d:448957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
    2. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    3. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    4. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    5. Alimonti, C. & Soldo, E., 2016. "Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 292-301.
    6. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    7. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    8. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    9. Dai, Chuanshan & Li, Jiashu & Shi, Yu & Zeng, Long & Lei, Haiyan, 2019. "An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    11. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    12. Templeton, J.D. & Ghoreishi-Madiseh, S.A. & Hassani, F. & Al-Khawaja, M.J., 2014. "Abandoned petroleum wells as sustainable sources of geothermal energy," Energy, Elsevier, vol. 70(C), pages 366-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo Renaud & Lehua Pan & Hannah Doran & Gioia Falcone & Patrick G. Verdin, 2021. "Numerical Analysis of Enhanced Conductive Deep Borehole Heat Exchangers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    2. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    3. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    4. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    5. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    6. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    7. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    8. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    9. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    10. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    11. Christopher S. Brown & Hannah Doran & Isa Kolo & David Banks & Gioia Falcone, 2023. "Investigating the Influence of Groundwater Flow and Charge Cycle Duration on Deep Borehole Heat Exchangers for Heat Extraction and Borehole Thermal Energy Storage," Energies, MDPI, vol. 16(6), pages 1-22, March.
    12. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    13. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    15. Kędzierski, Piotr & Nagórski, Zdzisław & Niezgoda, Tadeusz, 2016. "Determination of local values of heat transfer coefficient in geothermal models with internal functions method," Renewable Energy, Elsevier, vol. 92(C), pages 506-516.
    16. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    17. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    18. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    19. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.
    20. Huang, Wenbo & Cao, Wenjiong & Jiang, Fangming, 2018. "A novel single-well geothermal system for hot dry rock geothermal energy exploitation," Energy, Elsevier, vol. 162(C), pages 630-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6107-:d:448957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.