IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016264.html
   My bibliography  Save this article

A study on the microstructure and power generation performance of colored BIPV modules

Author

Listed:
  • Song, Min Ji
  • Yoon, Ha Eun
  • Choi, Gahyun
  • Jung, Yong Chan
  • Lee, Soo Yeol

Abstract

The need for greenhouse gas reduction and carbon neutrality is increasing, and the Building Integrated Photovoltaic (BIPV) power generation system is emerging as a key element. However, colored BIPV modules that enhance the aesthetic value of buildings have challenges in maintaining power generation efficiency due to their varied optical properties. This work investigates the structural, elemental, and power generation of colored BIPV modules fabricated using Plasma Enhanced Chemical Vapor Deposition (PECVD), inorganic pigment dyeing (HAZE), and color dot printing (DOT) in comparison to a conventional BIPV module without color treatment. Comprehensive structural and elemental analyses were performed, and optical properties were assessed. Power generation performance was measured using an Outdoor-exposed Power Generation Evaluation (OPGE) test at various tilt angles and azimuths. The results indicated a 57.2 % decrease in power output for the PECVD module, while the DOT and HAZE modules showed a reduction of approximately 30 % compared to the reference module. The power output of the colored modules decreased compared to the conventional ones due to higher light reflectance. However, to enhance efficiency, an improved optical design was developed, reducing light reflectance by over 57 % on average. This provides the potential for optimizing both the aesthetic and functional aspects.

Suggested Citation

  • Song, Min Ji & Yoon, Ha Eun & Choi, Gahyun & Jung, Yong Chan & Lee, Soo Yeol, 2024. "A study on the microstructure and power generation performance of colored BIPV modules," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016264
    DOI: 10.1016/j.renene.2024.121558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Martina Pelle & Francesco Causone & Laura Maturi & David Moser, 2023. "Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    3. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manni, Mattia & Melkert, Tom & Lobaccaro, Gabriele & Jelle, Bjørn Petter, 2025. "Implementation and validation of virtual clones of coloured building-integrated photovoltaic facades," Applied Energy, Elsevier, vol. 378(PA).
    2. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    3. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    4. Ding, Haoran & Xu, Mengyu & Zhang, Shicong & Yu, Fengtao & Kong, Kangyi & Shen, Zhongjin & Hua, Jianli, 2020. "Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation," Renewable Energy, Elsevier, vol. 155(C), pages 1051-1059.
    5. Minseon Kong & Da Hyeon Oh & Baekseo Choi & Yoon Soo Han, 2022. "Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound," Energies, MDPI, vol. 15(8), pages 1-13, April.
    6. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    7. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    8. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    9. Wen, Yaping & Zhang, Weiyi & Zhu, Xinrui & Zhang, Jinglai & Wang, Li, 2018. "Interfacial properties of high-order aggregation of organic dyes: A combination of static and dynamic properties," Energy, Elsevier, vol. 158(C), pages 537-545.
    10. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    11. Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025. "Review of explicit models for photovoltaic cell electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Siva Sankar Nemala & Sujitha Ravulapalli & Sudhanshu Mallick & Parag Bhargava & Sivasambu Bohm & Mayank Bhushan & Anukul K. Thakur & Debananda Mohapatra, 2020. "Conventional or Microwave Sintering: A Comprehensive Investigation to Achieve Efficient Clean Energy Harvesting," Energies, MDPI, vol. 13(23), pages 1-13, November.
    13. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    16. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Patil, Supriya A. & Hussain, Sajjad & Shrestha, Nabeen K. & Mengal, Naveed & Jalalah, Mohammed & Jung, Jongwan & Park, Jea-Gun & Choi, Hyosung & Kim, Hak-Sung & Noh, Yong-Young, 2020. "Facile synthesis of cobalt–nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells," Energy, Elsevier, vol. 202(C).
    18. Sanaz Mohammadpourasl & Fabrizia Fabrizi de Biani & Carmen Coppola & Maria Laura Parisi & Lorenzo Zani & Alessio Dessì & Massimo Calamante & Gianna Reginato & Riccardo Basosi & Adalgisa Sinicropi, 2020. "Ground-State Redox Potentials Calculations of D-?-A and D-A-?-A Organic Dyes for DSSC and Visible-Light-Driven Hydrogen Production," Energies, MDPI, vol. 13(8), pages 1-10, April.
    19. Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Miguel A. Taco-Ugsha & Cristian P. Santacruz & Patricio J. Espinoza-Montero, 2020. "Natural Dyes from Mortiño ( Vaccinium floribundum ) as Sensitizers in Solar Cells," Energies, MDPI, vol. 13(4), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.