IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008887.html
   My bibliography  Save this article

Multi-mode monitoring and energy management for photovoltaic-storage systems

Author

Listed:
  • Benavides, Darío
  • Arévalo, Paul
  • Criollo, Adrián
  • Tostado-Véliz, Marcos
  • Jurado, Francisco

Abstract

The integration of photovoltaic generation systems and variable demand can cause instability in the distribution network, due to power fluctuations and the increase in reactants, particularly in the industrial sector. In response, photovoltaic units have been equipped with local storage systems, which eventually absorb power fluctuations and improve installation performance. However, during this procedure other functionalities that energy storage could provide are neglected. Consequently, this study provides a multi-mode energy monitoring and management model that enables voltage regulation, frequency regulation and reactive power compensation through the optimal operation of energy storage systems. With this objective, a smoothing control algorithm is developed that interacts with parameters of the electrical grid at the common connection point and also allows the compensation of reactive power based on an industrial demand profile. This strategy uses the Long short-term memory neural network of historical demand data prior to energy consumption with a relatively low RMSE of 1.2e-09. The results are previously validated in a development environment using a real-time OPAL-RT simulator and tests in the electrical Microgrid laboratory at the University of Cuenca. This configuration allows establishing a demand forecasting model that improves the supervision, automation and analysis of daily energy production. A series of results are provided and analyzed that demonstrate that the new tool allows taking advantage of the provision of multimode functionalities, achieving optimal voltage regulation and improving power quality by reducing the total harmonic distortion THD (V) and THD (I) indices by 0.5. % and 2 % respectively.

Suggested Citation

  • Benavides, Darío & Arévalo, Paul & Criollo, Adrián & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Multi-mode monitoring and energy management for photovoltaic-storage systems," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008887
    DOI: 10.1016/j.renene.2024.120820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Gerardo González & Rommel Chacon & Bernardo Delgado & Dario Benavides & Juan Espinoza, 2020. "Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks," Energies, MDPI, vol. 13(15), pages 1-15, July.
    2. Karimi, M. & Mokhlis, H. & Naidu, K. & Uddin, S. & Bakar, A.H.A., 2016. "Photovoltaic penetration issues and impacts in distribution network – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 594-605.
    3. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    4. Reihani, Ehsan & Motalleb, Mahdi & Ghorbani, Reza & Saad Saoud, Lyes, 2016. "Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1372-1379.
    5. Hui Liang & Jiahui Wu & Hua Zhang & Jian Yang, 2023. "Two-Stage Short-Term Power Load Forecasting Based on RFECV Feature Selection Algorithm and a TCN–ECA–LSTM Neural Network," Energies, MDPI, vol. 16(4), pages 1-22, February.
    6. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    7. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    8. Michael Wood & Emanuele Ogliari & Alfredo Nespoli & Travis Simpkins & Sonia Leva, 2023. "Day Ahead Electric Load Forecast: A Comprehensive LSTM-EMD Methodology and Several Diverse Case Studies," Forecasting, MDPI, vol. 5(1), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    2. Jiang, Zhimin & Cai, Jie & Moses, Paul S., 2020. "Smoothing control of solar photovoltaic generation using building thermal loads," Applied Energy, Elsevier, vol. 277(C).
    3. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Zehir, Mustafa Alparslan & Batman, Alp & Sonmez, Mehmet Ali & Font, Aytug & Tsiamitros, Dimitrios & Stimoniaris, Dimitris & Kollatou, Theofano & Bagriyanik, Mustafa & Ozdemir, Aydogan & Dialynas, Evan, 2017. "Impacts of microgrids with renewables on secondary distribution networks," Applied Energy, Elsevier, vol. 201(C), pages 308-319.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    6. Wendy Miller & Aaron Liu & Zakaria Amin & Andreas Wagner, 2018. "Power Quality and Rooftop-Photovoltaic Households: An Examination of Measured Data at Point of Customer Connection," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    7. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    8. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    9. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    10. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    11. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    12. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    14. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    15. Hau, Lee Cheun & Lim, Yun Seng & Liew, Serena Miao San, 2020. "A novel spontaneous self-adjusting controller of energy storage system for maximum demand reductions under penetration of photovoltaic system," Applied Energy, Elsevier, vol. 260(C).
    16. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    17. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    18. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    19. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    20. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.