On the necessity of considering the hub when examining the induction of a horizontal axis tidal turbine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.120107
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nitin Kolekar & Ashwin Vinod & Arindam Banerjee, 2019. "On Blockage Effects for a Tidal Turbine in Free Surface Proximity," Energies, MDPI, vol. 12(17), pages 1-20, August.
- Keane, Aidan & Nisbet, Iain & Calvo, Gabriele & Pickering, George & Tulloch, Jake & More, Graham & Koronka, Neil, 2022. "Wind farm cumulative induction zone effect and the impact on energy yield estimation," Renewable Energy, Elsevier, vol. 181(C), pages 1209-1222.
- Kolekar, Nitin & Banerjee, Arindam, 2015. "Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," Applied Energy, Elsevier, vol. 148(C), pages 121-133.
- Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
- Meyer Forsting, Alexander R. & Navarro Diaz, Gonzalo P. & Segalini, Antonio & Andersen, Søren J. & Ivanell, Stefan, 2023. "On the accuracy of predicting wind-farm blockage," Renewable Energy, Elsevier, vol. 214(C), pages 114-129.
- Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
- Druault, Philippe & Germain, Grégory, 2022. "Experimental investigation of the upstream turbulent flow modifications in front of a scaled tidal turbine," Renewable Energy, Elsevier, vol. 196(C), pages 1204-1217.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Druault, Philippe & Germain, Grégory, 2022. "Experimental investigation of the upstream turbulent flow modifications in front of a scaled tidal turbine," Renewable Energy, Elsevier, vol. 196(C), pages 1204-1217.
- Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
- Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
- Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
- Zhang, Dayu & Guo, Penghua & Qian, Yuqi & Qiao, Hu & Li, Jingyin, 2024. "Analysis and optimization of a deep-water in-situ power generation system based on novel ductless Archimedes screw hydrokinetic turbines," Renewable Energy, Elsevier, vol. 225(C).
- Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.
- Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
- Aghsaee, Payam & Markfort, Corey D., 2018. "Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine," Renewable Energy, Elsevier, vol. 125(C), pages 620-629.
- Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
- Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
- Nitin Kolekar & Ashwin Vinod & Arindam Banerjee, 2019. "On Blockage Effects for a Tidal Turbine in Free Surface Proximity," Energies, MDPI, vol. 12(17), pages 1-20, August.
- Kinsey, Thomas & Dumas, Guy, 2017. "Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 103(C), pages 239-254.
- Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
- Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
- Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
- El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
- Abdulaziz Abutunis & Venkata Gireesh Menta, 2022. "Comprehensive Parametric Study of Blockage Effect on the Performance of Horizontal Axis Hydrokinetic Turbines," Energies, MDPI, vol. 15(7), pages 1-22, April.
- Ahmed Gharib-Yosry & Eduardo Blanco-Marigorta & Aitor Fernández-Jiménez & Rodolfo Espina-Valdés & Eduardo Álvarez-Álvarez, 2021. "Wind–Water Experimental Analysis of Small SC-Darrieus Turbine: An Approach for Energy Production in Urban Systems," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
- Riglin, Jacob & Carter, Fred & Oblas, Nick & Schleicher, W. Chris & Daskiran, Cosan & Oztekin, Alparslan, 2016. "Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications," Renewable Energy, Elsevier, vol. 99(C), pages 772-783.
- Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
More about this item
Keywords
Induction analytical model; Tidal turbine; Shear flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001721. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.