IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017275.html
   My bibliography  Save this article

Energy cost optimization through load shifting in a photovoltaic energy-sharing household community

Author

Listed:
  • Mota, Bruno
  • Faria, Pedro
  • Vale, Zita

Abstract

Home energy management systems are essential for the optimization of resources in complex demand scheduling problems that require energy efficiency in homes. This can be achieved through the use of Renewable Electricity Sources (RES), for cleaner and more sustainable energy generation, as well as participation in Demand Response (DR) programs, for lower energy prices. The problem becomes more complex when it is considered a community of households. This paper aims to address individual and community household participation in DR programs and RES sharing while considering constraints imposed on the operation schedule of appliances, through load shifting optimization. For that, a Genetic Algorithm is proposed, implemented, and validated, which focuses on minimizing energy costs. It takes into account dynamic pricing, distributed generation, and household community energy sharing. Using real household workload data, two case studies are presented, one for the cost optimization of an individual household and another for a photovoltaic energy-sharing household community containing twenty houses. Both case studies represent five days of scheduling, where each house can have up to five appliances able to shift. The business as usual costs are 16.74 EUR and 269.99 EUR for the individual and community case studies, respectively. Results show improvements of up to 24.3% (12.67 EUR in the optimized schedule, 4.07 EUR in savings) for the individual case study and 11.8% (238.21 EUR in the optimized schedule, 31.78 EUR in savings) for the household community. In a community, households can expect cost reductions of 1.5%–26.8% when compared to individual scheduling.

Suggested Citation

  • Mota, Bruno & Faria, Pedro & Vale, Zita, 2024. "Energy cost optimization through load shifting in a photovoltaic energy-sharing household community," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017275
    DOI: 10.1016/j.renene.2023.119812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahsa Khorram & Pedro Faria & Zita Vale & Carlos Ramos, 2020. "Sequential Tasks Shifting for Participation in Demand Response Programs," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Wee, Sherilyn, 2016. "The effect of residential solar photovoltaic systems on home value: A case study of Hawai‘i," Renewable Energy, Elsevier, vol. 91(C), pages 282-292.
    3. Daniel Ramos & Mahsa Khorram & Pedro Faria & Zita Vale, 2021. "Load Forecasting in an Office Building with Different Data Structure and Learning Parameters," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    4. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    5. Tomin, Nikita & Shakirov, Vladislav & Kurbatsky, Victor & Muzychuk, Roman & Popova, Ekaterina & Sidorov, Denis & Kozlov, Alexandr & Yang, Dechang, 2022. "A multi-criteria approach to designing and managing a renewable energy community," Renewable Energy, Elsevier, vol. 199(C), pages 1153-1175.
    6. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    7. Bruno Mota & Luis Gomes & Pedro Faria & Carlos Ramos & Zita Vale & Regina Correia, 2021. "Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events," Energies, MDPI, vol. 14(2), pages 1-14, January.
    8. Manirathinam, Thangaraj & Narayanamoorthy, Samayan & Geetha, Selvaraj & Othman, Mohd Fairuz Iskandar & Alotaibi, Badr Saad & Ahmadian, Ali & Kang, Daekook, 2023. "Sustainable renewable energy system selection for self-sufficient households using integrated fermatean neutrosophic fuzzy stratified AHP-MARCOS approach," Renewable Energy, Elsevier, vol. 218(C).
    9. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
    10. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chengyu & Rezgui, Yacine & Luo, Zhiwen & Jiang, Ben & Zhao, Tianyi, 2024. "Simultaneous community energy supply-demand optimization by microgrid operation scheduling optimization and occupant-oriented flexible energy-use regulation," Applied Energy, Elsevier, vol. 373(C).
    2. Pagnini, Luisa & Bracco, Stefano & Delfino, Federico & de-Simón-Martín, Miguel, 2024. "Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    2. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    3. Lehmann, Nico & Sloot, Daniel & Schüle, Christopher & Ardone, Armin & Fichtner, Wolf, 2023. "The motivational drivers behind consumer preferences for regional electricity – Results of a choice experiment in Southern Germany," Energy Economics, Elsevier, vol. 120(C).
    4. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    5. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    6. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    7. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    8. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    9. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    11. Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
    12. Stute, Judith & Klobasa, Marian, 2024. "How do dynamic electricity tariffs and different grid charge designs interact? - Implications for residential consumers and grid reinforcement requirements," Energy Policy, Elsevier, vol. 189(C).
    13. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    14. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    16. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    17. Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
    18. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    19. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    20. Poshnath, Aravind & Rismanchi, Behzad & Rajabifard, Abbas, 2023. "Adoption of Renewable Energy Systems in common properties of multi-owned buildings: Introduction of ‘Energy Entitlement’," Energy Policy, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.