IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123012806.html
   My bibliography  Save this article

Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage

Author

Listed:
  • Yang, Weibo
  • Zhang, Yu
  • Wang, Feng
  • Liu, Aihua

Abstract

To investigate operation characteristics of seasonal borehole underground thermal energy storage (SBUTES) with different operational strategies, a model test platform with reduced size was established based on similarity principle. The test results show that the larger the start-stop time ratio, the smaller the average heat exchange rate per unit depth (HERPUD) of borehole, and the lower the energy storage efficiency, but the thermal energy storage and extraction capacity increase. For the time ratio of thermal energy storage to extraction (TROSE), the larger the TROSE, the larger the thermal imbalance rate of energy storage body, which will lead to the gradual increase or decrease of temperature of energy storage body and is not conducive to the operation of energy storage. Compared with the asynchronous mode of storage and extraction, the synchronous mode of storage and extraction can effectively reduce the average temperature of energy storage body and increase the heat exchange efficiency of boreholes during the thermal energy storage. The focused energy storage mode can improve the energy storage efficiency and soil temperature recovery rate, balance the thermal energy storage and extraction capacity, and thus the performance of SBUTES can be optimized. A 3-D CFD model of borehole energy storage was established to further find the influences of borehole layout forms, layout spacing and depths on characteristics of the SBUTES. It can be found that for the energy storage efficiency, the hexagonal layout is the highest, the rectangular layout is the lowest, and the circular layout is slightly higher than the square one. Under the same volume of boreholes group, increasing the spacing of inner boreholes can effectively alleviate thermal interference of inner boreholes during the thermal energy storage, and the heat exchange capacity undertaken by inner boreholes can be improved. But it is not conducive to thermal energy extraction. Although increasing borehole depth can increase thermal energy storage and extraction capacity and system operation efficiency, the increase degree is decreasing with the increase of borehole depth, and the greater the borehole depth, the smaller the influence of borehole depth on characteristics of SBUTES.

Suggested Citation

  • Yang, Weibo & Zhang, Yu & Wang, Feng & Liu, Aihua, 2023. "Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123012806
    DOI: 10.1016/j.renene.2023.119365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    2. Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.
    3. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    4. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.
    5. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    2. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Maragna, Charles & Rey, Charlotte & Perreaux, Marc, 2023. "A novel and versatile solar Borehole Thermal Energy Storage assisted by a Heat Pump. Part 1: System description," Renewable Energy, Elsevier, vol. 208(C), pages 709-725.
    4. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    5. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    6. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    7. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    8. Seung-Min Lee & Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Proposition of Design Capacity of Borehole Heat Exchangers for Use in the Schematic-Design Stage," Energies, MDPI, vol. 14(4), pages 1-17, February.
    9. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
    10. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    11. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    13. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    14. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    15. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    16. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    18. Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
    19. Yang, Tianrun & Liu, Wen & Sun, Qie & Hu, Weihao & Kramer, Gert Jan, 2023. "Techno-economic-environmental analysis of seasonal thermal energy storage with solar heating for residential heating in China," Energy, Elsevier, vol. 283(C).
    20. Han, Chanjuan & Yu, Xiong (Bill), 2017. "Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: A simulation based analysis," Renewable Energy, Elsevier, vol. 101(C), pages 214-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123012806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.