IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011266.html
   My bibliography  Save this article

Effect of attapulgite on anaerobic digestion of primary sludge and downstream valorization of produced biosolids

Author

Listed:
  • Sakaveli, Foteini
  • Petala, Maria
  • Tsiridis, Vasilios
  • Karas, Panagiotis A.
  • Karpouzas, Dimitrios G.
  • Darakas, Efthymios

Abstract

In the light of European Union's Green Deal, the aim of this study was the optimization of municipal primary sludge management, from biomethane production to the final valorization of the produced biosolids. The obtained results showed that the addition of attapulgite in the primary sludge favored the production of methane. The highest methane production was noted when attapulgite was used at a dose equal to 20 g/L. At this dose, methane production raised up to 378 mL CH4/g VS, 47% higher than that of the individual anaerobic digestion of primary sludge. Moreover, in this case, microbial community analysis revealed an increase in the relative abundance of Methanofastidiosaceae and a decrease of Methanocorpusculaceae, suggesting that attapulgite might induce a shift to a more methyl-thiol dominated hydrogenotrophic methanogenesis. In addition, the produced digestate demonstrated better behavior as regards dewaterability, since the normalized capillary suction time was about 54% lower than that of primary's sludge digestate, indicating that attapulgite diminished sludge's capacity to retain water. Finally, it is shown that the dried biosolids amended soil properties by augmenting organic matter content by about 20%, enhancing nutrients bioavailability, while also stimulated plant growth, unveiling their added value in green-based soil improvement solutions.

Suggested Citation

  • Sakaveli, Foteini & Petala, Maria & Tsiridis, Vasilios & Karas, Panagiotis A. & Karpouzas, Dimitrios G. & Darakas, Efthymios, 2023. "Effect of attapulgite on anaerobic digestion of primary sludge and downstream valorization of produced biosolids," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011266
    DOI: 10.1016/j.renene.2023.119211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Yue-gan & Xu, Lu & Bao, Jing & Firmin, Kotchikpa Adekunle & Zong, Wenming, 2020. "Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community," Renewable Energy, Elsevier, vol. 145(C), pages 222-232.
    2. Andrey Kiselev & Elena Magaril & Romen Magaril & Deborah Panepinto & Marco Ravina & Maria Chiara Zanetti, 2019. "Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions," Resources, MDPI, vol. 8(2), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaxuan Xiong & Aitonglu Zhang & Yanqi Zhao & Qian Xu & Yulong Ding, 2024. "A Mini Review on Sewage Sludge and Red Mud Recycling for Thermal Energy Storage," Energies, MDPI, vol. 17(9), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Sara Alonso-Muñoz & Rocío González-Sánchez & Cristina Siligardi & Fernando Enrique García-Muiña, 2021. "Building Exploitation Routines in the Circular Supply Chain to Obtain Radical Innovations," Resources, MDPI, vol. 10(3), pages 1-18, March.
    3. Débora Cynamon Kligerman & Aline Stelling Zanatta & Graziella de Araújo Toledo & Joseli Maria da Rocha Nogueira, 2023. "Path toward Sustainability in Wastewater Management in Brazil," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    4. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    5. Jena, Priyaranjan & Raj, Reetu & Tirkey, Jeewan Vachan, 2023. "Thermodynamic performance study and RSM based optimization of SI engine using sewage sludge producer gas blend with methane," Energy, Elsevier, vol. 273(C).
    6. Marzena Smol, 2020. "Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions," Resources, MDPI, vol. 9(8), pages 1-24, July.
    7. A.V. Kiselev & E.R. Magaril & I.S. Glushankova & L.V. Rudakova, 2020. "Analysis of Sewage Sludge Alternatives Towards Circular Economy," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(3), pages 329-347.
    8. Gergely Tóth, 2019. "Circular Economy and its Comparison with 14 Other Business Sustainability Movements," Resources, MDPI, vol. 8(4), pages 1-19, September.
    9. Idiano D’Adamo & Pasquale Marcello Falcone & Massimo Gastaldi & Piergiuseppe Morone, 2019. "A Social Analysis of the Olive Oil Sector: The Role of Family Business," Resources, MDPI, vol. 8(3), pages 1-17, August.
    10. Pushpa Jha, 2019. "Adsorptive Findings on Selected Biomasses for Removal of Phenol from Aqueous Solutions," Resources, MDPI, vol. 8(4), pages 1-14, November.
    11. Agnieszka A. Pilarska & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Krzysztof Pilarski & Artur Olesienkiewicz, 2020. "A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process," Energies, MDPI, vol. 13(21), pages 1-24, November.
    12. Elena R. Magaril & Leonid D. Gitelman & Anzhelika P. Karaeva & Andrey V. Kiselev & Mikhail V. Kozhevnikov, 2022. "Methodological Approach to the Environmental and Economic Assessment of Biogas Energy Projects," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 21(2), pages 217-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.