IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics096014812300839x.html
   My bibliography  Save this article

A renewable energy optimisation approach with production planning for a real industrial process: An application of genetic algorithms

Author

Listed:
  • Gómez, Javier
  • Chicaiza, William D.
  • Escaño, Juan M.
  • Bordons, Carlos

Abstract

This article presents the formulation of the optimisation of a manufacturing process, through genetic algorithms, managing the generation and demand of energy in a factory at periodic moments of time. The strategy manages to minimise the daily energy cost and maximise the use of installed renewable energy, also taking advantage of potential battery banks. A time series with a 24-hour horizon of energy production from renewable sources and the electricity supply prices provided by the electricity market operator has been considered. Furthermore, in the simulations, scenarios with different battery capacities have been tested, which has allowed a preliminary study to be carried out for the installation of the electrical storage bank. The results presented in this work show that 6% of energy costs can be saved per day, compared to the current management decided by the manufacturing plant operators.

Suggested Citation

  • Gómez, Javier & Chicaiza, William D. & Escaño, Juan M. & Bordons, Carlos, 2023. "A renewable energy optimisation approach with production planning for a real industrial process: An application of genetic algorithms," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300839x
    DOI: 10.1016/j.renene.2023.118933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300839X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad T. Taghavifard, 2012. "Scheduling Cellular Manufacturing Systems Using ACO and GA," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 3(1), pages 48-64, January.
    2. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    3. Ruiz Duarte, José Luis & Fan, Neng & Jin, Tongdan, 2020. "Multi-process production scheduling with variable renewable integration and demand response," European Journal of Operational Research, Elsevier, vol. 281(1), pages 186-200.
    4. Rodríguez-García, Javier & Álvarez-Bel, Carlos & Carbonell-Carretero, José-Francisco & Alcázar-Ortega, Manuel & Peñalvo-López, Elisa, 2016. "A novel tool for the evaluation and assessment of demand response activities in the industrial sector," Energy, Elsevier, vol. 113(C), pages 1136-1146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akshay Ranade & Javier Gómez & Andrew de Juan & William D. Chicaiza & Michael Ahern & Juan M. Escaño & Andriy Hryshchenko & Olan Casey & Aidan Cloonan & Dominic O’Sullivan & Ken Bruton & Alan McGibney, 2024. "Implementing Industry 4.0: An In-Depth Case Study Integrating Digitalisation and Modelling for Decision Support System Applications," Energies, MDPI, vol. 17(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    2. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    3. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
    6. Bruno Mota & Luis Gomes & Pedro Faria & Carlos Ramos & Zita Vale & Regina Correia, 2021. "Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events," Energies, MDPI, vol. 14(2), pages 1-14, January.
    7. Arabzadeh, Vahid & Miettinen, Panu & Kotilainen, Titta & Herranen, Pasi & Karakoc, Alp & Kummu, Matti & Rautkari, Lauri, 2023. "Urban vertical farming with a large wind power share and optimised electricity costs," Applied Energy, Elsevier, vol. 331(C).
    8. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    10. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    11. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.
    12. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    13. Valentina De Simone & Valentina Di Pasquale & Maria Elena Nenni & Salvatore Miranda, 2023. "Sustainable Production Planning and Control in Manufacturing Contexts: A Bibliometric Review," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    14. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    15. Fatras, Nicolas & Ma, Zheng & Duan, Hongbo & Jørgensen, Bo Nørregaard, 2022. "A systematic review of electricity market liberalisation and its alignment with industrial consumer participation: A comparison between the Nordics and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Jun Dong & Huijuan Huo & Dongran Liu & Rong Li, 2017. "Evaluating the Comprehensive Performance of Demand Response for Commercial Customers by Applying Combination Weighting Techniques and Fuzzy VIKOR Approach," Sustainability, MDPI, vol. 9(8), pages 1-32, July.
    17. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    18. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    19. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    20. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300839x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.