IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp42-54.html
   My bibliography  Save this article

A new fractal model for quantitatively investigating the contribution of microstructural evolution to geothermal extraction

Author

Listed:
  • Zhu, Jingyun
  • Liu, Guannan
  • Luo, Ning
  • Gu, Jiayi
  • Liu, Hu
  • Ye, Dayu

Abstract

As one of the most fundamental clean energy sources, geothermal energy extraction and application has undergone extensive research and analysis. Understanding fluid seepage behavior in the pore and fracture microstructure of complex reservoir is fundamental to the extraction. In this study, we provide a novel method for measuring the interplay between pore microstructure and thermal–hydrological–mechanical coupling. The fractal geothermal model developed in this study was validated for correctness by comparison with field extraction data, published model, and analytical solution. For studying thermal conduction, seepage, and fracture-matrix interactions in geothermal reservoirs, the fractal seepage model proposed in this research is superior to the traditional cubic seepage model, according to the findings. Permeability increases by about 11.7% as fractal dimension increases by 0.4%. In addition, both the produced fluid temperature and the mean reservoir temperature are inversely proportional to the pore fractal dimension and initial porosity. We can infer that different structural parameters will have an array of effects on seepage resulting from geothermal extraction, which cannot be predicted using cubic permeability models. This provides new ideas for geothermal extraction practitioners.

Suggested Citation

  • Zhu, Jingyun & Liu, Guannan & Luo, Ning & Gu, Jiayi & Liu, Hu & Ye, Dayu, 2023. "A new fractal model for quantitatively investigating the contribution of microstructural evolution to geothermal extraction," Renewable Energy, Elsevier, vol. 211(C), pages 42-54.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:42-54
    DOI: 10.1016/j.renene.2023.04.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    2. Chen, Yun & Ma, Guowei & Wang, Huidong & Li, Tuo & Wang, Yang & Sun, Zizheng, 2020. "Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects," Renewable Energy, Elsevier, vol. 148(C), pages 326-337.
    3. Wouter J. E. M. Habraken & Jinhui Tao & Laura J. Brylka & Heiner Friedrich & Luca Bertinetti & Anna S. Schenk & Andreas Verch & Vladimir Dmitrovic & Paul H. H. Bomans & Peter M. Frederik & Jozua Laven, 2013. "Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate," Nature Communications, Nature, vol. 4(1), pages 1-12, June.
    4. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    5. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    2. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    3. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    4. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    5. Chen, Yun & Wang, Huidong & Li, Tuo & Wang, Yang & Ren, Feng & Ma, Guowei, 2020. "Evaluation of geothermal development considering proppant embedment in hydraulic fractures," Renewable Energy, Elsevier, vol. 153(C), pages 985-997.
    6. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    7. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    8. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    9. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    10. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    11. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    12. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    13. Chen, Yun & Ma, Guowei & Wang, Huidong & Li, Tuo & Wang, Yang & Sun, Zizheng, 2020. "Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects," Renewable Energy, Elsevier, vol. 148(C), pages 326-337.
    14. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    15. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    16. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    17. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    18. Ma, Weiwu & Wang, Yadan & Wu, Xiaotian & Liu, Gang, 2020. "Hot dry rock (HDR) hydraulic fracturing propagation and impact factors assessment via sensitivity indicator," Renewable Energy, Elsevier, vol. 146(C), pages 2716-2723.
    19. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    20. Wu, Peng & Chen, Yukun & Shang, Anran & Ding, Jiping & Wei, Jiangong & Liu, Weiguo & Li, Yanghui, 2024. "Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:42-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.