IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp509-524.html
   My bibliography  Save this article

Experimental study of floating wind turbine control on a TetraSub floater with tower velocity feedback gain

Author

Listed:
  • Meng, Fanzhong
  • Lio, Wai Hou
  • Pegalajar-Jurado, Antonio
  • Pierella, Fabio
  • Hofschulte, Eric Nicolas
  • Santaya, Alex Gandia
  • Bredmose, Henrik

Abstract

We present an experimental study of floating wind turbine control with inclusion of tower motion feedback. The study is conducted for a 1:60 scaled-model of the DTU 10MW reference wind turbine on a design variant of the TetraSub floater. A review of control methods for floating wind turbines is provided, covering both de-tune and tower motion feedback methods. We next detail the implementation in the experimental setup that includes real-time integration and low-pass filtering of the measured tower-top acceleration. We demonstrate how the tower feedback loop is able to stabilize an otherwise unstable land-based controller. The results further show that the stability is maintained for increasing values of the feedback gain until a certain limit. For the chosen control parameters and the lab-generated wind field, which had limited low-frequency energy, we observe that the variations in rotor speed, blade pitch and platform motion are generally larger for the tower loop controller. This finding is not generalizable due to the special inflow conditions and because controller optimization is not performed. For the tower loop controller, a substantial response at the floater roll frequency is identified. This is caused by the influence of blade pitch on the aerodynamic torque in combination with the constant generator torque. Mitigation through generator torque control is proposed.

Suggested Citation

  • Meng, Fanzhong & Lio, Wai Hou & Pegalajar-Jurado, Antonio & Pierella, Fabio & Hofschulte, Eric Nicolas & Santaya, Alex Gandia & Bredmose, Henrik, 2023. "Experimental study of floating wind turbine control on a TetraSub floater with tower velocity feedback gain," Renewable Energy, Elsevier, vol. 205(C), pages 509-524.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:509-524
    DOI: 10.1016/j.renene.2023.01.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, T. & Madsen, F.J. & Bredmose, H. & Pegalajar-Jurado, A., 2023. "Numerical analysis and comparison study of the 1:60 scaled DTU 10 MW TLP floating wind turbine," Renewable Energy, Elsevier, vol. 202(C), pages 210-221.
    2. Goupee, Andrew J. & Kimball, Richard W. & Dagher, Habib J., 2017. "Experimental observations of active blade pitch and generator control influence on floating wind turbine response," Renewable Energy, Elsevier, vol. 104(C), pages 9-19.
    3. Madsen, F.J. & Nielsen, T.R.L. & Kim, T. & Bredmose, H. & Pegalajar-Jurado, A. & Mikkelsen, R.F. & Lomholt, A.K. & Borg, M. & Mirzaei, M. & Shin, P., 2020. "Experimental analysis of the scaled DTU10MW TLP floating wind turbine with different control strategies," Renewable Energy, Elsevier, vol. 155(C), pages 330-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    3. Fontanella, Alessandro & Facchinetti, Alan & Daka, Elio & Belloli, Marco, 2023. "Modeling the coupled aero-hydro-servo-dynamic response of 15 MW floating wind turbines with wind tunnel hardware in the loop," Renewable Energy, Elsevier, vol. 219(P1).
    4. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Zhang, Zili, 2022. "Vibration suppression of floating offshore wind turbines using electromagnetic shunt tuned mass damper," Renewable Energy, Elsevier, vol. 198(C), pages 1279-1295.
    6. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    7. Ferčák, Ondřej & Bossuyt, Juliaan & Ali, Naseem & Cal, Raúl Bayoán, 2022. "Decoupling wind–wave–wake interactions in a fixed-bottom offshore wind turbine," Applied Energy, Elsevier, vol. 309(C).
    8. Kim, T. & Madsen, F.J. & Bredmose, H. & Pegalajar-Jurado, A., 2023. "Numerical analysis and comparison study of the 1:60 scaled DTU 10 MW TLP floating wind turbine," Renewable Energy, Elsevier, vol. 202(C), pages 210-221.
    9. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Li, Jinyuan & Wang, Yu, 2024. "Experimental study of a semi-submersible floating wind turbine with aquaculture cages under combined wind and irregular waves," Energy, Elsevier, vol. 306(C).
    10. Hu, Ruiqi & Le, Conghuan & Gao, Zhen & Ding, Hongyan & Zhang, Puyang, 2021. "Implementation and evaluation of control strategies based on an open controller for a 10 MW floating wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 1751-1766.
    11. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).
    12. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
    13. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    14. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Alessandro Fontanella & Giulia Da Pra & Marco Belloli, 2023. "Integrated Design and Experimental Validation of a Fixed-Pitch Rotor for Wind Tunnel Testing," Energies, MDPI, vol. 16(5), pages 1-15, February.
    16. Nicole Mendoza & Amy Robertson & Alan Wright & Jason Jonkman & Lu Wang & Roger Bergua & Tri Ngo & Tuhin Das & Mohammad Odeh & Kazi Mohsin & Francesc Fabregas Flavia & Benjamin Child & Galih Bangga & M, 2022. "Verification and Validation of Model-Scale Turbine Performance and Control Strategies for the IEA Wind 15 MW Reference Wind Turbine," Energies, MDPI, vol. 15(20), pages 1-25, October.
    17. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    18. Chen, Jianbing & Liu, Zenghui & Song, Yupeng & Peng, Yongbo & Li, Jie, 2022. "Experimental study on dynamic responses of a spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 560-578.
    19. Keflemariam, Yisehak A. & Lee, Sang, 2023. "Control and dynamic analysis of a 10 MW floating wind turbine on a TetraSpar multi-body platform," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:509-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.