IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1372-1380.html
   My bibliography  Save this article

Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions

Author

Listed:
  • Siddiqui, Muhammad Ehtisham
  • Almatrafi, Eydhah
  • Bamasag, Ahmad
  • Saeed, Usman

Abstract

This paper investigates the potential of CO2-based binary mixtures to operate a Rankine cycle with low-grade heat sources in warm regions. Utilizing low-grade heat sources in warm regions is a challenging task due to lower turbine inlet temperatures and higher pump inlet temperatures. A transcritical Rankine cycle with heat recuperation is implemented to minimize the heat losses linked with the isothermal phase change process of the working fluid. A proper selection of the working fluid suitable for a given scenario is one of the crucial tasks to maximize the thermal efficiency of the cycle. Energy and exergy analyses are presented for the cycle running with pure CO2 and CO2-based binary mixtures as a working fluid. Five different organic fluids (n-pentane, cyclopentane, cyclohexane, R1336mzz, and R600) are selected as additives to make a binary mixture. The effect of additive concentration in the mixture on the thermodynamic performance of the cycle is investigated. The cycle is found to perform significantly better if operated with a binary mixture than pure CO2. Binary mixtures of CO2 with n-pentane, cyclopentane, and cyclohexane perform substantially better than the rest with an increase in the thermal efficiency by more than 30% in comparison to the thermal efficiency of the cycle operating with pure CO2. The results indicate that the adoption of the CO2-based binary mixture for a transcritical Rankine cycle not only improves the overall thermodynamic performance but also reduces the operating pressures of the cycle which may lead to less expensive materials needed for the various components of the plant. Exergy analysis reveals that the irreversibility losses in the system during the heat transfer process are much larger than in the turbomachinery.

Suggested Citation

  • Siddiqui, Muhammad Ehtisham & Almatrafi, Eydhah & Bamasag, Ahmad & Saeed, Usman, 2022. "Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions," Renewable Energy, Elsevier, vol. 199(C), pages 1372-1380.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1372-1380
    DOI: 10.1016/j.renene.2022.09.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    2. Zhijian Wang & Hua Tian & Lingfeng Shi & Gequn Shu & Xianghua Kong & Ligeng Li, 2020. "Fluid Selection of Transcritical Rankine Cycle for Engine Waste Heat Recovery Based on Temperature Match Method," Energies, MDPI, vol. 13(7), pages 1-19, April.
    3. Oyeniyi A. Oyewunmi & Christos N. Markides, 2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System," Energies, MDPI, vol. 9(6), pages 1-21, June.
    4. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    5. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.
    6. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Cignitti, Stefano & Andreasen, Jesper G. & Haglind, Fredrik & Woodley, John M. & Abildskov, Jens, 2017. "Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery," Applied Energy, Elsevier, vol. 203(C), pages 442-453.
    8. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mana, A.A. & Kaitouni, S.I. & Kousksou, T. & Jamil, A., 2023. "Enhancing sustainable energy conversion: Comparative study of superheated and recuperative ORC systems for waste heat recovery and geothermal applications, with focus on 4E performance," Energy, Elsevier, vol. 284(C).
    2. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.
    3. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    4. Ge, Zhong & Wang, Xiaodong & Li, Jian & Xu, Jian & Xie, Jianbin & Xie, Zhiyong & Ma, Ruiqu, 2024. "Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.
    3. Wang, Enhua & Zhang, Mengru & Meng, Fanxiao & Zhang, Hongguang, 2022. "Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine," Energy, Elsevier, vol. 243(C).
    4. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    5. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    6. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    7. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    10. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    11. Mohan, Sooraj & Dinesha, P. & Campana, Pietro Elia, 2022. "ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid," Energy, Elsevier, vol. 259(C).
    12. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
    13. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    14. Martin T. White & Abdulnaser I. Sayma, 2018. "A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles," Energies, MDPI, vol. 11(4), pages 1-26, March.
    15. Muhammad Ehtisham Siddiqui & Eydhah Almatrafi & Usman Saeed & Aqeel Ahmad Taimoor, 2023. "Selection of Organic Fluid Based on Exergetic Performance of Subcritical Organic Rankine Cycle (ORC) for Warm Regions," Energies, MDPI, vol. 16(13), pages 1-14, July.
    16. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.
    17. Yao, Yu & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Sun, Xiaocun & Zhang, Yonghao & Wu, Zirui & Sun, Rui & Shu, Gequn, 2022. "Combined cooling and power cycle for engine waste heat recovery using CO2-based mixtures," Energy, Elsevier, vol. 240(C).
    18. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    19. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling," Applied Energy, Elsevier, vol. 235(C), pages 1400-1414.
    20. Jesper Graa Andreasen & Martin Ryhl Kærn & Fredrik Haglind, 2019. "Assessment of Methods for Performance Comparison of Pure and Zeotropic Working Fluids for Organic Rankine Cycle Power Systems," Energies, MDPI, vol. 12(9), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1372-1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.