IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp463-483.html
   My bibliography  Save this article

A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy

Author

Listed:
  • Moghtader Gilvaei, Zoleikha
  • Haghighi Poshtiri, Amin
  • Mirzazade Akbarpoor, Ali

Abstract

Hybridization of natural ventilation with the passive cooling technique is a feasible approach for reducing the dependency on energy-consuming mechanical HVAC systems. The present study numerically investigated the viability of the application of a novel hybrid system composed of a windcatcher, an earth-to-air heat exchanger (EAHE), and a direct evaporative cooling system in a residential building. The test building was a two-story apartment with an area of 100 m2 (each floor 50 m2). 3-D Computational Fluid Dynamics (CFD) simulations were conducted to determine the airflow characteristics inside and outside the test apartment. Moreover, a computer program was developed and validated with the literature for modeling the thermal performance of the system. The effects of the environmental conditions (wind speed, ambient temperature and relative humidity, and average soil temperature) and the windows opening on the performance of the system were evaluated. The obtained results provided a design guideline that determines the allowable windows opening range for providing the thermal comfort conditions in the test rooms. The studied passive system could fulfil the comfort criteria for the test building under a maximum cooling load of 10000 W and 6500 W, according to adaptive thermal comfort standards (ATCS) and ISO7730, respectively. Finally, the energy metric and environmental analysis were carried out to compare the introduced system with the conventional mechanical cooling equipment during the hot months of the year. It was concluded that utilizing the proposed system could lessen the hourly electrical energy consumption by 0.0194 kW h/m2 compared to split air conditioners and 0.0081 kW h/m2 in comparison with evaporative coolers, resulting in a 20.2815 kg/m2 and 8.4681 kg/m2 annual reduction in CO2 emission, respectively.

Suggested Citation

  • Moghtader Gilvaei, Zoleikha & Haghighi Poshtiri, Amin & Mirzazade Akbarpoor, Ali, 2022. "A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy," Renewable Energy, Elsevier, vol. 198(C), pages 463-483.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:463-483
    DOI: 10.1016/j.renene.2022.07.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
    2. Bouchahm, Yasmina & Bourbia, Fatiha & Belhamri, Azeddine, 2011. "Performance analysis and improvement of the use of wind tower in hot dry climate," Renewable Energy, Elsevier, vol. 36(3), pages 898-906.
    3. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    4. Kalantar, Vali, 2009. "Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region," Renewable Energy, Elsevier, vol. 34(1), pages 246-254.
    5. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    6. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    7. Montazeri, H. & Montazeri, F. & Azizian, R. & Mostafavi, S., 2010. "Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling," Renewable Energy, Elsevier, vol. 35(7), pages 1424-1435.
    8. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    9. Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
    10. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    11. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    12. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    13. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
    2. Sady, Hamed & Rashidi, Saman & Rafee, Roohollah, 2024. "Towards a net-zero-energy building with smart control of Trombe walls, underground air ducts, and optimal microgrid composed of renewable energy systems," Energy, Elsevier, vol. 294(C).
    3. Liu, Miaomiao & Nejat, Payam & Cao, Pinlu & Jimenez-Bescos, Carlos & Calautit, John Kaiser, 2024. "A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
    2. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    5. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    6. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    7. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    8. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    9. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    10. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    11. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    12. Moradi, H. & Eskandari, H., 2012. "An experimental and numerical investigation of Shovadan heating and cooling operation," Renewable Energy, Elsevier, vol. 48(C), pages 364-368.
    13. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    14. Calautit, John Kaiser & Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2013. "Comparison between evaporative cooling and a heat pipe assisted thermal loop for a commercial wind tower in hot and dry climatic conditions," Applied Energy, Elsevier, vol. 101(C), pages 740-755.
    15. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    16. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    17. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    18. Azam Noroozi & Yannis S. Veneris, 2018. "Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher," Energies, MDPI, vol. 11(2), pages 1-15, February.
    19. Calautit, John Kaiser & Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2013. "CFD analysis of a heat transfer device integrated wind tower system for hot and dry climate," Applied Energy, Elsevier, vol. 112(C), pages 576-591.
    20. Mahon, Harry & Friedrich, Daniel & Hughes, Ben, 2022. "Wind tunnel test and numerical study of a multi-sided wind tower with horizontal heat pipes," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:463-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.