IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp932-942.html
   My bibliography  Save this article

The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability

Author

Listed:
  • Sim, Jaebong
  • Kang, Minsoo
  • Oh, Hwanyeong
  • Lee, Eunsook
  • Jyoung, Jy-Young
  • Min, Kyoungdoug

Abstract

A gas diffusion layer (GDL) is one of the main components of a proton exchange membrane fuel cell (PEMFC), which helps discharge the water generated by the electrochemical reaction and promotes the diffusion of reactant gases. The GDL typically consists of a microporous layer (MPL) and a substrate, and the MPL is mainly composed of carbon black and PTFE (polytetrafluoroethylene). In this study, to optimize the effective reaction area of the catalyst layer by increasing the specific surface area of the MPL and improve the water discharge capability of GDL by increasing the porosity of the MPL, the GDLs are manufactured by varying the manufacturing methods of the MPL. The MPL design parameters considered in this study are the particle size of carbon black, the addition of smaller carbon black particles to the MPL, and the number of cracks in the MPL. The performance tendencies are quantitatively identified through polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, electrochemical surface area, liquid water, water vapor, gas permeabilities, and capillary pressure gradient. The results showed that the MPL has a dominant effect on the electrochemical surface area (ECSA) of the catalyst layer and the mass transport resistance of the PEMFC.

Suggested Citation

  • Sim, Jaebong & Kang, Minsoo & Oh, Hwanyeong & Lee, Eunsook & Jyoung, Jy-Young & Min, Kyoungdoug, 2022. "The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability," Renewable Energy, Elsevier, vol. 197(C), pages 932-942.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:932-942
    DOI: 10.1016/j.renene.2022.07.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Junhyun & Park, Jaeman & Oh, Hwanyeong & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2013. "Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses," Applied Energy, Elsevier, vol. 111(C), pages 300-309.
    2. Chun, Jeong Hwan & Jo, Dong Hyun & Kim, Sang Gon & Park, Sun Hee & Lee, Chang Hoon & Kim, Sung Hyun, 2012. "Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks," Renewable Energy, Elsevier, vol. 48(C), pages 35-41.
    3. Sim, Jaebong & Kang, Minsoo & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2022. "Effects of carbon corrosion on proton exchange membrane fuel cell performance using two durability evaluation methods," Renewable Energy, Elsevier, vol. 190(C), pages 959-970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lin & Yang, Yongbin & Ou, Yang & Zhong, Qiang & Zhang, Yan & Yi, Lingyun & Li, Qian & Huang, Zhucheng & Jiang, Tao, 2024. "In-depth study on the synergistic conversion mechanism of iron ore with waste biochar for co-producing directly reduced iron (DRI) and syngas," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sim, Jaebong & Kang, Minsoo & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2022. "Effects of carbon corrosion on proton exchange membrane fuel cell performance using two durability evaluation methods," Renewable Energy, Elsevier, vol. 190(C), pages 959-970.
    2. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    4. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    5. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    6. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    7. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    8. Lan, Shunbo & Lin, Rui & Dong, Mengcheng & Lu, Kai & Lou, Mingyu, 2023. "Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance," Energy, Elsevier, vol. 266(C).
    9. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    10. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    11. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    12. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    13. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    14. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    15. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.
    16. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    17. Wang, Yang & Luo, Hui & Li, Guang & Jiang, Jianming, 2016. "Highly active platinum electrocatalyst towards oxygen reduction reaction in renewable energy generations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 173(C), pages 59-66.
    18. Deng, Hao & Wang, Dawei & Wang, Renfang & Xie, Xu & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1272-1278.
    19. Sim, Jaebong & Kang, Minsoo & Kim, Jiwoong & Min, Kyoungdoug, 2022. "Effects of operating conditions, various properties of the gas diffusion layer, and shape of endplate on the open-cathode proton exchange membrane fuel cell performance," Renewable Energy, Elsevier, vol. 196(C), pages 40-51.
    20. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:932-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.