IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp617-626.html
   My bibliography  Save this article

Production of biogas by microorganisms with saccharine sorghum straw as substrate with or without alkaline and citric pretreatment

Author

Listed:
  • de Rossi, Eduardo
  • Tavares, Maria Herminia Ferreira
  • Teleken, Joel Gustavo
  • Cremonez, Paulo André
  • Christ, Divair
  • Gomes, Simone Damasceno
  • Bariccatti, Reinaldo Aparecido

Abstract

This study proposes the use of mixtures of straws with different pretreatments (citric acid or NaOH: urea) and straw in natura, in anaerobic biodigestion. As this straw is a lignocellulosic material with slow degradation by microorganisms, it is necessary to apply pretreatments, increasing biogas production and consumption of volatile solids. The pretreated material can be used to increase the solids content in anaerobic biodigestion reactors operating with large volumes and low volatile solids loads. This study showed a synergistic effect between substrates with different pretreatments and found the best blend for each hydraulic retention time. The ideal mix up to 31 days of hydraulic retention time was from 33.33% to 50.00% of straw pretreated with NaOH: urea and the remainder with straw pretreated with citric acid. After this period, at 46 days, mixtures containing all three components are desirable. At 61 days, factors such as volatile solids reduction and methane content were no longer significant, with a mixture of straw pretreated with citric acid and NaOH: urea at 50% each. These results confirm the importance of straw pre-treatments to reduce the hydraulic retention time, increasing the potential use of cellulosic materials in biodigestion.

Suggested Citation

  • de Rossi, Eduardo & Tavares, Maria Herminia Ferreira & Teleken, Joel Gustavo & Cremonez, Paulo André & Christ, Divair & Gomes, Simone Damasceno & Bariccatti, Reinaldo Aparecido, 2022. "Production of biogas by microorganisms with saccharine sorghum straw as substrate with or without alkaline and citric pretreatment," Renewable Energy, Elsevier, vol. 197(C), pages 617-626.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:617-626
    DOI: 10.1016/j.renene.2022.07.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    3. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    2. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    3. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    4. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    7. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    8. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    9. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    10. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    11. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    12. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    13. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    14. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    15. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    16. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    17. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    18. Tariq, Mohsin & Mehmood, Ayaz & Abbas, Yasir & Rukh, Shah & Shah, Fayyaz Ali & Hassan, Ahmed & Gurmani, Ali Raza & Ahmed, Zahoor & Yun, Sining, 2024. "Digestate quality and biogas enhancement with laterite mineral and biochar: Performance and mechanism in anaerobic digestion," Renewable Energy, Elsevier, vol. 220(C).
    19. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    20. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:617-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.