IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp1-10.html
   My bibliography  Save this article

Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China

Author

Listed:
  • Kuang, Hewu
  • Akmal, Zeeshan
  • Li, Feifei

Abstract

This paper uses panel data on renewable energy in China. Thus, the current analysis fills the gaps by examining the relationship between green technology innovation and renewable energy and CO2 emissions from 1990 to 2018. The current study examines all concerns connected to panel data analysis with advanced panel estimators, such as cross-sectional dependence, stationarity, variation in slope parameters, and structural break. Our findings show that test results reveal that green technology innovation and renewable energy have a negative and considerable influence on CO2 emissions in the long run. Moreover, the short-run relationship of green technology innovation, on the other hand, is not significant—as evidenced by the findings of robustness tests such as AMG and CCEMG. Other empirical results revealed that GTI, REN and NEN significantly reduced local CO2 emission, while POP and PI had no obvious reduction effects on CO2 emissions. Different GTIs had the same spatial “symbiotic effects” on CO2 emission reduction in the short term, showing positive spatial spillover reduction effects. Lastly, we conclude that the use of green technology innovation has positive externalities. Some policies to assist green innovation technologies and renewable energy resources have been suggested for the Chinese government to enact.

Suggested Citation

  • Kuang, Hewu & Akmal, Zeeshan & Li, Feifei, 2022. "Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China," Renewable Energy, Elsevier, vol. 197(C), pages 1-10.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1-10
    DOI: 10.1016/j.renene.2022.06.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinying & Li, Sisi, 2020. "Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model," Energy Policy, Elsevier, vol. 140(C).
    2. Wang, Fayuan & Wang, Rong & He, Zhili, 2021. "The impact of environmental pollution and green finance on the high-quality development of energy based on spatial Dubin model," Resources Policy, Elsevier, vol. 74(C).
    3. He, Lingyun & Liu, Rongyan & Zhong, Zhangqi & Wang, Deqing & Xia, Yufei, 2019. "Can green financial development promote renewable energy investment efficiency? A consideration of bank credit," Renewable Energy, Elsevier, vol. 143(C), pages 974-984.
    4. Erum Rehman & Muhammad Ikram & Shazia Rehman & Ma Tie Feng, 2021. "Growing green? Sectoral-based prediction of GHG emission in Pakistan: a novel NDGM and doubling time model approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12169-12191, August.
    5. Huang, He & Hong, Jingke & Wang, Xianzhu & Chang-Richards, Alice & Zhang, Jingxiao & Qiao, Bei, 2022. "A spatiotemporal analysis of the driving forces behind the energy interactions of the Chinese economy: Evidence from static and dynamic perspectives," Energy, Elsevier, vol. 239(PB).
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2013. "DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations," Energy Economics, Elsevier, vol. 40(C), pages 370-382.
    7. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    8. Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. El-Kassar, Abdul-Nasser & Singh, Sanjay Kumar, 2019. "Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 483-498.
    10. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    11. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    12. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    13. Shahzad, Umer & Ferraz, Diogo & Nguyen, Huu-Huan & Cui, Lianbiao, 2022. "Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    14. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    15. Jingxiang Lv & Tao Peng & Yingfeng Zhang & Yuchang Wang, 2021. "A novel method to forecast energy consumption of selective laser melting processes," International Journal of Production Research, Taylor & Francis Journals, vol. 59(8), pages 2375-2391, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Rui & Lin, Boqiang, 2023. "Nexus between green finance development and green technological innovation: A potential way to achieve the renewable energy transition," Renewable Energy, Elsevier, vol. 218(C).
    2. Liang, Zhiying & Chen, Jian & Jiang, Dayang & Sun, Yunpeng, 2022. "Assessment of the spatial association network of green innovation: Role of energy resources in green recovery," Resources Policy, Elsevier, vol. 79(C).
    3. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    4. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    5. Haider Mahmood & Maham Furqan & Najia Saqib & Anass Hamadelneel Adow & Muzaffar Abbas, 2023. "Innovations and the CO 2 Emissions Nexus in the MENA Region: A Spatial Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Yan Yu & Wenjie Hu & Chunyu Dong & Xiao Gu & Bojan Obrenovic, 2023. "E-Commerce Development and Green Technology Innovation: Impact Mechanism and the Spatial Spillover Effect," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    7. Bei Liu & Yukun Li & Xiaoya Tian & Lipeng Sun & Pishi Xiu, 2023. "Can Digital Economy Development Contribute to the Low-Carbon Transition? Evidence from the City Level in China," IJERPH, MDPI, vol. 20(3), pages 1-19, February.
    8. Silva, Luan Carlos Santos & Ten Caten, Carla Schwengber & Gaia, Silvia, 2023. "Conceptual framework of green technology transfer at public university scope Brazilian," Innovation and Green Development, Elsevier, vol. 2(4).
    9. Huang, Zilong & Ren, Xiaocong, 2024. "Impact of natural resources, resilient economic growth, and energy consumption on CO2 emissions," Resources Policy, Elsevier, vol. 90(C).
    10. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    11. Lin, Hsiao-Hsien & Hsu, Chao-Chun & Wu, Po-Hsuan & Shen, Chih-Chien & Chen, Gan-Hong, 2024. "Demystifying the interconnections among natural resources, fintech, green technologies, and sustainable environment in E-7 nations," Resources Policy, Elsevier, vol. 90(C).
    12. Bai, Dongbei & Hu, Jin & Irfan, Muhammad & Hu, Mingjun, 2023. "Unleashing the impact of ecological civilization pilot policies on green technology innovation: Evidence from a novel SC-DID model," Energy Economics, Elsevier, vol. 125(C).
    13. Hossain, Mohammad Razib & Dash, Devi Prasad & Das, Narasingha & Ullah, Ehsan & Hossain, Md. Emran, 2024. "Green energy transition in OECD region through the lens of economic complexity and environmental technology: A method of moments quantile regression perspective," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Zhu, Bo & Zhao, Yue, 2022. "Carbon risk and the cost of bank loans: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Bilal, Muhammad Junaid & Shaheen, Wasim Abbas, 2024. "Towards sustainable development: Investigating the effect of green financial indicators on renewable energy via the mediating variable," Renewable Energy, Elsevier, vol. 221(C).
    4. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    5. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    6. Xiaoling Zhang & Zhangming Shan & Xuerong Wang & Decai Tang, 2023. "The Impact of Green Finance on Upgrading the Manufacturing Industry of the Yangtze River Economic Belt Based on the Spatial Econometric Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    7. Dogan, Eyup & Madaleno, Mara & Taskin, Dilvin & Tzeremes, Panayiotis, 2022. "Investigating the spillovers and connectedness between green finance and renewable energy sources," Renewable Energy, Elsevier, vol. 197(C), pages 709-722.
    8. YunQian Zhang, 2023. "Impact of green finance and environmental protection on green economic recovery in South Asian economies: mediating role of FinTech," Economic Change and Restructuring, Springer, vol. 56(3), pages 2069-2086, June.
    9. Aghilasse Kashi & Mohamed Eskandar Shah, 2023. "Bibliometric Review on Sustainable Finance," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    10. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Ge, Tao & Cai, Xuesen & Song, Xiaowei, 2022. "How does renewable energy technology innovation affect the upgrading of industrial structure? The moderating effect of green finance," Renewable Energy, Elsevier, vol. 197(C), pages 1106-1114.
    12. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    13. Lei Nie & Purong Chen & Xiuli Liu & Qinqin Shi & Jing Zhang, 2022. "Coupling and Coordinative Development of Green Finance and Industrial-Structure Optimization in China: Spatial-Temporal Difference and Driving Factors," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
    14. Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    15. Pang, Lidong & Zhu, Meng Nan & Yu, Haiyan, 2022. "Is green finance really a blessing for green technology and carbon efficiency?," Energy Economics, Elsevier, vol. 114(C).
    16. Tang, Xinmeng & Zhou, Xiaoguang, 2023. "Impact of green finance on renewable energy development: A spatiotemporal consistency perspective," Renewable Energy, Elsevier, vol. 204(C), pages 320-337.
    17. Deng, Ming, 2022. "China economic performance and natural resources commodity prices volatility: Evidence from China in COVID-19," Resources Policy, Elsevier, vol. 75(C).
    18. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Qadri, Hussain Mohi ud Din & Ali, Hassnian & Abideen, Zain ul & Jafar, Ahmad, 2024. "Mapping the Evolution of Green Finance Research and Development in Emerging Green Economies," Resources Policy, Elsevier, vol. 91(C).
    20. Peng, Yue & Wang, Wei & Zhen, Shangsong & Liu, Yunqiang, 2024. "Does digitalization help green consumption? Empirical test based on the perspective of supply and demand of green products," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.