IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp1343-1353.html
   My bibliography  Save this article

The role of solar cooling for nearly zero energy multifamily buildings: Performance analysis across different climates

Author

Listed:
  • Bilardo, Matteo
  • Ferrara, Maria
  • Fabrizio, Enrico

Abstract

The building sector has great potential for contributing to the 2030 EU goals of decreasing greenhouse gas emissions and increasing production from renewable sources. This is even more important considering the increasing cooling energy needs. Among the available technologies, solar cooling (SC) represents a good alternative to traditional electric chillers. However, its use in residential buildings is still limited.

Suggested Citation

  • Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2022. "The role of solar cooling for nearly zero energy multifamily buildings: Performance analysis across different climates," Renewable Energy, Elsevier, vol. 194(C), pages 1343-1353.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1343-1353
    DOI: 10.1016/j.renene.2022.05.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
    2. Pinamonti, Maria & Baggio, Paolo, 2020. "Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings," Renewable Energy, Elsevier, vol. 157(C), pages 90-99.
    3. Simon Pezzutto & Matteo De Felice & Reza Fazeli & Lukas Kranzl & Stefano Zambotti, 2017. "Status Quo of the Air-Conditioning Market in Europe: Assessment of the Building Stock," Energies, MDPI, vol. 10(9), pages 1-17, August.
    4. Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2020. "Performance assessment and optimization of a solar cooling system to satisfy renewable energy ratio (RER) requirements in multi-family buildings," Renewable Energy, Elsevier, vol. 155(C), pages 990-1008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    2. Gür, Muhammed & Öztop, Hakan F. & Selimefendigil, Fatih, 2023. "Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach," Renewable Energy, Elsevier, vol. 218(C).
    3. Alrobaian, Abdulrahman A., 2023. "Impact of optimal sizing and integration of thermal energy storage in solar assisted energy systems," Renewable Energy, Elsevier, vol. 211(C), pages 761-771.
    4. Liu, Huifang & Tan, Qianli & Shi, Ying & Yu, Bendong & Zhang, Mingyi, 2024. "Enhancing indoor thermal comfort and energy efficiency: A comparative study of RC-PCM Trombe wall performance," Renewable Energy, Elsevier, vol. 227(C).
    5. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    2. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    3. Braungardt, Sibylle & Bürger, Veit & Zieger, Jana & Bosselaar, Lex, 2019. "How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 260-267.
    4. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2022. "Space Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    6. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    7. Bisengimana, Emmanuel & Zhou, Jinzhi & Binama, Maxime & Yuan, Yanping, 2022. "Numerical investigation on the factors influencing the temperature distribution of photovoltaic/thermal (PVT) evaporator/condenser for heat pump systems," Renewable Energy, Elsevier, vol. 194(C), pages 885-901.
    8. Marika Pilou & George Kosmadakis & George Meramveliotakis, 2023. "Modeling of an Integrated Renewable-Energy-Based System for Heating, Cooling, and Electricity for Buildings," Energies, MDPI, vol. 16(12), pages 1-29, June.
    9. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    10. Elnagar, Essam & Pezzutto, Simon & Duplessis, Bruno & Fontenaille, Théodore & Lemort, Vincent, 2023. "A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    11. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    12. Larrea-Sáez, Lorena & Muñoz, Enrique & Cuevas, Cristian & Casas-Ledón, Yannay, 2024. "Optimizing insulation and heating systems for social housing in Chile: Insights for sustainable energy policies," Energy, Elsevier, vol. 290(C).
    13. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Eric Wilczynski, 2022. "Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    14. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    15. Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    16. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    17. Piotr Jadwiszczak & Jakub Jurasz & Bartosz Kaźmierczak & Elżbieta Niemierka & Wandong Zheng, 2021. "Factors Shaping A/W Heat Pumps CO₂ Emissions—Evidence from Poland," Energies, MDPI, vol. 14(6), pages 1-13, March.
    18. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
    19. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.
    20. Andrea Zambito & Giovanni Pernigotto & Simon Pezzutto & Andrea Gasparella, 2022. "Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe," Sustainability, MDPI, vol. 14(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1343-1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.