Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.05.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
- Lisowski, Aleksander & Olendzki, Dariusz & Świętochowski, Adam & Dąbrowska, Magdalena & Mieszkalski, Leszek & Ostrowska-Ligęza, Ewa & Stasiak, Mateusz & Klonowski, Jacek & Piątek, Michał, 2019. "Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets," Renewable Energy, Elsevier, vol. 142(C), pages 173-183.
- Kang, Sae Byul & Oh, Hong Young & Kim, Jong Jin & Choi, Kyu Sung, 2017. "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renewable Energy, Elsevier, vol. 113(C), pages 1208-1214.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghorashi, Seyed Amin & Khandelwal, Bhupendra, 2023. "Toward the ultra-clean and highly efficient biomass-fired heaters. A review," Renewable Energy, Elsevier, vol. 205(C), pages 631-647.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
- Mendoza Martinez, Clara Lisseth & Saari, Jussi & Melo, Yara & Cardoso, Marcelo & de Almeida, Gustavo Matheus & Vakkilainen, Esa, 2021. "Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
- Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
- Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
- Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
- Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
- Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
- Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Xie, Rui & Chen, Zhengjie & Ma, Wenhui & Wang, Xiaoyue & Gan, Xiaowei & Tao, Chenggang & Qu, Junyu, 2024. "High efficient and clean utilization of renewable energy for the process of industrial silicon," Renewable Energy, Elsevier, vol. 231(C).
- Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
- Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
- Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
- Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
- Alexandre Vandeponseele & Micheline Draye & Christine Piot & Gregory Chatel, 2021. "Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions," Clean Technol., MDPI, vol. 3(2), pages 1-16, April.
- Marcelina Sołtysik & Izabela Majchrzak-Kucęba & Dariusz Wawrzyńczak, 2022. "Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
- Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
- Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
- Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
More about this item
Keywords
Spent coffee grounds; Pelleting; Co-firing; Emissions; TGA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:464-474. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.