IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v30y2008i6p2771-2784.html
   My bibliography  Save this article

Accounting for quality: Issues with modeling the impact of R&D on economic growth and carbon emissions in developing economies

Author

Listed:
  • Fisher-Vanden, Karen
  • Sue Wing, Ian

Abstract

The literature on climate policy modeling has paid scant attention to the important role that R&D is already playing in industrializing countries such as China, where R&D investments are targeting not only productivity improvements but also enhancements in the quality and variety of products. We focus here on the effects of quality-enhancing innovation on energy use and GHG emissions in developing countries. We construct an analytical model to show that efficiency-improving and quality-enhancing R&D have opposing influences on energy and emission intensities, with the efficiency-improving R&D having an attenuating effect and quality-enhancing R&D having an amplifying effect. We find that the balance of these opposing forces depends on the elasticity of upstream output with respect to efficiency-improving R&D, the elasticity of downstream output with respect to upstream quality-enhancing R&D occurring upstream, and the relative shares of emissions-intensive inputs in the costs of production of upstream versus downstream industries. We employ a computable general equilibrium (CGE) simulation of the Chinese economy to illustrate the difficulties that arise in incorporating these results into models for climate policy analysis, and we offer a simple remedy.

Suggested Citation

  • Fisher-Vanden, Karen & Sue Wing, Ian, 2008. "Accounting for quality: Issues with modeling the impact of R&D on economic growth and carbon emissions in developing economies," Energy Economics, Elsevier, vol. 30(6), pages 2771-2784, November.
  • Handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:2771-2784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(07)00069-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    2. Karen Fisher-Vanden, 2003. "The Effect of Market Reforms on Structural Change: Implications for Energy Use and Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurt Kratena & Michael Wüger, 2010. "The Full Impact of Energy Efficiency on Households' Energy Demand," WIFO Working Papers 356, WIFO.
    2. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    3. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    4. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
    5. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
    6. Antosiewicz, Marek & Witajewski-Baltvilks, Jan, 2021. "Short- and long-run dynamics of energy demand," Energy Economics, Elsevier, vol. 103(C).
    7. Szolgayová, Jana & Golub, Alexander & Fuss, Sabine, 2014. "Innovation and risk-averse firms: Options on carbon allowances as a hedging tool," Energy Policy, Elsevier, vol. 70(C), pages 227-235.
    8. Wei Jin & ZhongXiang Zhang, 2016. "China's pursuit of environmentally sustainable development: Harnessing the new engine of technological innovation," CCEP Working Papers 1601, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    9. Rauscher, Michael, 2009. "Green R&D versus end-of-pipe emission abatement: A model of directed technical change," Thuenen-Series of Applied Economic Theory 106, University of Rostock, Institute of Economics.
    10. Wei Jin & ZhongXiang Zhang, 2014. "From Energy-intensive to Innovation-led Growth: On the Transition Dynamics of China’s Economy," Working Papers 2014.100, Fondazione Eni Enrico Mattei.
    11. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    12. Janos Varga & Werner Roeger & Jan in ’t Veld, 2021. "E-QUEST – A Multi-Region Sectoral Dynamic General Equilibrium Model with Energy Model Description and Applications to Reach the EU Climate Targets," European Economy - Discussion Papers 146, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Carlo Carraro & Enrica De Cian & Lea Nicita, 2009. "Modeling Biased Technical Change. Implications For Climate Policy," Working Papers 2009_27, Department of Economics, University of Venice "Ca' Foscari".
    14. Nepal, Rabindra, 2011. "Energy efficiency in transition: do market-oriented economic reforms matter?," MPRA Paper 33349, University Library of Munich, Germany.
    15. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    16. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    17. Ignazio Musu, 2010. "Green Economy: great expectation or big illusion?," Working Papers 2010_01, Department of Economics, University of Venice "Ca' Foscari".
    18. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    19. Johanna Vogel & Kurt Kratena & Kathrin Hofmann, 2015. "The Bias of Technological Change in Europe. WWWforEurope Working Paper No. 98," WIFO Studies, WIFO, number 58200, January.
    20. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:2771-2784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.