IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp347-361.html
   My bibliography  Save this article

Enhancing expansion of rooftop PV systems through Mixed Integer Linear Programming and Public Tender Procedures

Author

Listed:
  • Georgiou, Giorgos S.
  • Rouvas, Constantinos
  • Nathanael, Demetris

Abstract

Concerning the growth rate in Renewable Energy share, especially in the EU, it is fact that Rooftop PV systems have a significant role to play. Nevertheless, it is also accepted that with current policies, schemes and scientific methods, today's Renewable Energy growth rate is still far from the desired one. Based on that, this study proposes a novel integration of a Mixed-Integer Linear Programming based model in a Public Tender Procedure, which enables the bulk installation and thus, the rapid expansion of Rooftop PV systems, in a least-cost manner. The main objective and contribution of this paper is to provide an economic solution to interested Public Bodies for utilizing the rapid growth of rooftop PV systems through novel mechanisms and hence, to better achieve the desired Renewable Energy targets. To further highlight the capabilities of the proposed method, the results from a real-life project, showed that the bulk installation of PV systems, in 404 public schools with a total PV capacity of 4.8 MWp, can be realized at an optimum cost. The main achievements are: (i) high-level competition, due to the ability of the proposed model to select multiple PV Installers, (ii) a 35% lower project cost compared to the initial estimated budget and (iii) a significantly lower unit cost of about 0.7 million €/MWp, compared to about 0.91 and 1.54 million €/MWp obtained from other similar projects. Finally, the outcomes of the proposed MILP model are validated by those obtained from an exhaustive optimal solution search procedure.

Suggested Citation

  • Georgiou, Giorgos S. & Rouvas, Constantinos & Nathanael, Demetris, 2022. "Enhancing expansion of rooftop PV systems through Mixed Integer Linear Programming and Public Tender Procedures," Renewable Energy, Elsevier, vol. 187(C), pages 347-361.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:347-361
    DOI: 10.1016/j.renene.2022.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    2. Cheaitou, Ali & Larbi, Rim & Al Housani, Bashayer, 2019. "Decision making framework for tender evaluation and contractor selection in public organizations with risk considerations," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    3. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    5. Icmeli-Tukel, Oya & Rom, Walter O., 1997. "Ensuring quality in resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 103(3), pages 483-496, December.
    6. Sujeet Kumar Singh & Mark Goh, 2019. "Multi-objective mixed integer programming and an application in a pharmaceutical supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 1214-1237, February.
    7. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    8. Diana Bernasconi & Giorgio Guariso, 2021. "Rooftop PV: Potential and Impacts in a Complex Territory," Energies, MDPI, vol. 14(12), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dasí-Crespo, Daniel & Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2023. "Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain," Renewable Energy, Elsevier, vol. 204(C), pages 788-802.
    2. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    3. Álvaro Rodríguez-Martinez & Carlos Rodríguez-Monroy, 2021. "Economic Analysis and Modelling of Rooftop Photovoltaic Systems in Spain for Industrial Self-Consumption," Energies, MDPI, vol. 14(21), pages 1-32, November.
    4. Abbas Al-Refaie & Natalija Lepkova & Constantinos Hadjistassou, 2023. "Using System Dynamics to Examine Effects of Satisfaction with PV Systems, Advertising, and Competition on Energy Security and CO 2 Emissions in Jordan," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    5. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    6. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    7. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    8. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    9. Hossein Lotfi & Mohammad Ebrahim Hajiabadi & Hossein Parsadust, 2024. "Power Distribution Network Reconfiguration Techniques: A Thorough Review," Sustainability, MDPI, vol. 16(23), pages 1-33, November.
    10. Katerina Fotova Čiković & Ivana Martinčević & Joško Lozić, 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    11. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    12. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    13. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    14. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    15. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    16. Vendrell-Herrero, Ferran & Darko, Christian & Vaillant, Yancy, 2022. "Firm productivity and government contracts: The moderating role of corruption," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    17. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    18. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).
    19. Omid Valizadeh & Mojtaba Ghiyasi, 2023. "Assessing telecommunication contractor firms using a hybrid DEA-BWM method," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(4), pages 189-200.
    20. Katheryn Donado & Loraine Navarro & Christian G. Quintero M. & Mauricio Pardo, 2019. "HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems," Energies, MDPI, vol. 13(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:347-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.