IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp192-215.html
   My bibliography  Save this article

Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis

Author

Listed:
  • Pahamli, Y.
  • Hosseini, M.J.
  • Ardahaie, S. Saedi
  • Ranjbar, A.A.

Abstract

The present paper introduces a novel latent heat storage system applicable to hot water systems equipped with a Phase Change Material (PCM) and a Novel set of Blossom-Shaped Fins (BSFs). The water supplied by the collector is injected into the heat exchanger as a Heat Transfer Fluid (HTF). The PCM is charged during the daytime and will be reused as a primary system to supply the building's heating load at nighttime. The system's performance is investigated for various geometrical parameters, including the fin-number, fin's degree of compactness, fin-height, and the combined-fin heights/pin. Moreover, thermodynamic optimization through exergy analysis is applied to give better insights into the system's performance and efficiency. Results imply that both the variations of the fin-number and the fin's degree of compactness improve the charging time by 17% and 2%, respectively. Moreover, the fin-number variations positively affect the exergy efficiency by 6%, while compactness of fins shows a converse behavior with an 8% reduction in the exergy efficiency. On the other hand, the fin height/pin parameter variations improve the melting performance by 15% while having fewer exergy efficiencies. In addition, reducing the fin-height parameter improves the exergy efficiency of the case with the least melting time by 25% while associated with the most prolonged melting duration. Hence, considering the different impacts of geometric parameters on the exergy efficiency and the storage time, one should pay attention to the designer's view and climate conditions to choose the suitable heat exchanger based on the desired application. If the storage time is limited, the combined fin height/pin is preferred. Otherwise, the fin-height might be a better candidate to achieve higher exergy efficiencies and system performance.

Suggested Citation

  • Pahamli, Y. & Hosseini, M.J. & Ardahaie, S. Saedi & Ranjbar, A.A., 2022. "Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis," Renewable Energy, Elsevier, vol. 182(C), pages 192-215.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:192-215
    DOI: 10.1016/j.renene.2021.09.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
    2. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    3. Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, vol. 86(10), pages 2047-2055, October.
    4. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    5. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    6. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
    7. Esapour, M. & Hosseini, M.J. & Ranjbar, A.A. & Pahamli, Y. & Bahrampoury, R., 2016. "Phase change in multi-tube heat exchangers," Renewable Energy, Elsevier, vol. 85(C), pages 1017-1025.
    8. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    9. Kazemi, M. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Improvement of longitudinal fins configuration in latent heat storage systems," Renewable Energy, Elsevier, vol. 116(PA), pages 447-457.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Mao, Qianjun & Hu, Xinlei & Li, Tao, 2022. "Study on heat storage performance of a novel vertical shell and multi-finned tube tank," Renewable Energy, Elsevier, vol. 193(C), pages 76-88.
    3. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
    5. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    7. He, Fan & Bo, Renfei & Hu, Chenxi & Meng, Xi & Gao, Weijun, 2023. "Employing spiral fins to improve the thermal performance of phase-change materials in shell-tube latent heat storage units," Renewable Energy, Elsevier, vol. 203(C), pages 518-528.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    2. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    3. Safari, Vahid & Abolghasemi, Hossein & Kamkari, Babak, 2021. "Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins," Renewable Energy, Elsevier, vol. 174(C), pages 102-121.
    4. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    5. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    6. Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
    7. Li, Xiao-Yan & Yang, Liu & Wang, Xue-Lei & Miao, Xin-Yue & Yao, Yu & Qiang, Qiu-Qiu, 2018. "Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems," Energy, Elsevier, vol. 150(C), pages 591-600.
    8. David W. MacPhee & Mustafa Erguvan, 2020. "Thermodynamic Analysis of a High-Temperature Latent Heat Thermal Energy Storage System," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Englmair, Gerald & Moser, Christoph & Schranzhofer, Hermann & Fan, Jianhua & Furbo, Simon, 2019. "A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation," Applied Energy, Elsevier, vol. 242(C), pages 1108-1120.
    10. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    11. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    12. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    13. Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
    14. Pahamli, Y. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 30-42.
    15. Riahi, Soheila & Saman, Wasim Y. & Bruno, Frank & Belusko, Martin & Tay, N.H.S., 2018. "Performance comparison of latent heat storage systems comprising plate fins with different shell and tube configurations," Applied Energy, Elsevier, vol. 212(C), pages 1095-1106.
    16. Kalapala, Lokesh & Devanuri, Jaya Krishna, 2020. "Energy and exergy analyses of latent heat storage unit positioned at different orientations – An experimental study," Energy, Elsevier, vol. 194(C).
    17. Wołoszyn, Jerzy & Szopa, Krystian, 2023. "A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 202(C), pages 1342-1356.
    18. Ali Motevali & Mohammadreza Hasandust Rostami & Gholamhassan Najafi & Wei-Mon Yan, 2021. "Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems)," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    19. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
    20. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:192-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.