IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics036054422402303x.html
   My bibliography  Save this article

Experimental and numerical analysis of cosine wave heat source on thermal storage performance of a conical spiral shell-tube energy storage system

Author

Listed:
  • Zhao, Yuan
  • Mao, Qianjun
  • Zhang, Yufei

Abstract

Solar radiation is the main driving force for the energy source of solar collectors, and its intensity determines the amount of energy that solar collectors can absorb. Therefore, the periodicity of radiation intensity will lead to periodic fluctuations in the outlet water temperature of solar collectors. This study numerically investigates the effects of the heat source period, amplitude, inlet flow rate, and steady state heat source temperature on the thermal storage performance of conical spiral shell-tube energy storage systems when the inlet temperature varies periodically as a cosine function using fluent software. The results show that when heat source periods are between 5 and 300 min, compared to the constant heat source, the total energy storage capacity can be increased by a maximum of 7.32 %. The melting time can be shortened by a maximum of 16.31 %. The average energy storage rate and energy storage efficiency can be increased by a maximum of 4.08 % and 0.17 %, respectively. When amplitudes are increased from 0 to 20 K, the melting time, total energy storage capacity, and energy storage efficiency are reduced by 30.21 %, 1.19 %, and 1.64 %, respectively. The average energy storage rate increases by 41.59 %. Furthermore, compared to the constant heat source, increasing the inlet flow rate and steady state heat source temperature has more significant effects on the thermal storage performance under cosine wave heat sources. The results can provide some reference for the optimization of phase change thermal storage systems under unsteady state conditions.

Suggested Citation

  • Zhao, Yuan & Mao, Qianjun & Zhang, Yufei, 2024. "Experimental and numerical analysis of cosine wave heat source on thermal storage performance of a conical spiral shell-tube energy storage system," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s036054422402303x
    DOI: 10.1016/j.energy.2024.132529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402303X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huo, Yutao & Zong, Jianhua & Rao, Zhonghao, 2019. "The investigations on the heat transfer in thermal energy storage with time-dependent heat flux for power plants," Energy, Elsevier, vol. 175(C), pages 1209-1221.
    2. Pahamli, Y. & Hosseini, M.J. & Ardahaie, S. Saedi & Ranjbar, A.A., 2022. "Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis," Renewable Energy, Elsevier, vol. 182(C), pages 192-215.
    3. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    4. Prieto, Cristina & Cabeza, Luisa F., 2019. "Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance," Applied Energy, Elsevier, vol. 254(C).
    5. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    6. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    7. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    8. Li, Tao & Zhu, Yuanyuan & Hu, Xinlei & Mao, Qianjun, 2023. "Numerical investigation of the influence of unsteady inlet temperature on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 280(C).
    9. Gokon, Nobuyuki & Yamaguchi, Tomoya & Kodama, Tatsuya, 2016. "Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process," Energy, Elsevier, vol. 113(C), pages 1099-1108.
    10. Tao, Y.B. & He, Y.L., 2011. "Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary," Applied Energy, Elsevier, vol. 88(11), pages 4172-4179.
    11. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
    12. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    13. He, Wei & Xu, Qing & Liu, Shengchun & Wang, Tieying & Wang, Fang & Wu, Xiaohui & Wang, Yulin & Li, Hailong, 2024. "Analysis on data center power supply system based on multiple renewable power configurations and multi-objective optimization," Renewable Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
    2. Liu, Jiatao & Lu, Shilei, 2024. "Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating," Energy, Elsevier, vol. 299(C).
    3. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    4. Li, Zhi & Yu, Xiaoli & Wang, Lei & Lu, Yiji & Huang, Rui & Chang, Jinwei & Jiang, Ruicheng, 2020. "Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process," Energy, Elsevier, vol. 199(C).
    5. Safari, Vahid & Abolghasemi, Hossein & Kamkari, Babak, 2021. "Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins," Renewable Energy, Elsevier, vol. 174(C), pages 102-121.
    6. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    8. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    9. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    10. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    11. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    12. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    13. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    14. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    15. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    17. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    18. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    19. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    20. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s036054422402303x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.