IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1344-1357.html
   My bibliography  Save this article

Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance

Author

Listed:
  • Cao, Yan
  • Ayed, Hamdi
  • Hashemian, Mehran
  • Issakhov, Alibek
  • Jarad, Fahd
  • Wae-hayee, Makatar

Abstract

In this numerical study, an attempt has been made to improve the thermal performance of the flat-plate solar collector (FPSC) by inducing the swirl flow inside the tube by the considered nozzles. To this end, the effect of the number of circumferential nozzles and their inclination angles was taken into the account. The considered number of nozzles was "single", ''dual'', ''triple'', and ''quad''. For each of the said cases, the inclination angle of nozzles was taken 30°, 45°, 60°, and 90° (A30, A45, A60, A90). Moreover, the mass flow rate of single-nozzle pipe was considered 0.2 kg/s, 1 kg/s, and 2 kg/s. To analyze all of the cases under identical conditions, the said mass flow rates were distributed equally among all of the nozzles (for ''dual'', ''triple'', and ''quad''). All of the characteristics were defined in a form of "A…-D…-N…-M…'' where ''A…'', "D…", "N…", and "M…" stand for angle of injection, diameter of pipe, nozzle cross-section edge, and mass flow rate, respectively. Numerical simulation (3-dimensional) of the system was performed by Finite Volume Method (FVM). The turbulence nature of flow was simulated by the k-omega SST (shear stress transport) turbulent model. Results showed that the "single-nozzle'' swirl generator had the highest thermal performance factor (TPF) so that for all cases its values were greater than unit. Mass flow rate growth increases Nu, heat extraction rate, and kinetic energy rate (KER) while drops friction factor and outlet temperature. Increment of injection angle increases outlet temperature and friction factor and reduces KER. The maximum and minimum values of TPF are 4.19 and 0.44 which belong to "single; A30-D50-N12.5-M0.2" and "quad; A90-D50-N12.5-M0.5", respectively.

Suggested Citation

  • Cao, Yan & Ayed, Hamdi & Hashemian, Mehran & Issakhov, Alibek & Jarad, Fahd & Wae-hayee, Makatar, 2021. "Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance," Renewable Energy, Elsevier, vol. 180(C), pages 1344-1357.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1344-1357
    DOI: 10.1016/j.renene.2021.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang Xu & Tao Yang & Yanhua Sun & Lei Xi & Jianmin Gao & Yunlong Li, 2021. "Flow and Heat Transfer Characteristics of a Swirling Impinging Jet Issuing from a Threaded Nozzle of 45 Degrees," Energies, MDPI, vol. 14(24), pages 1-26, December.
    2. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).
    3. Hu, Pengfei & Cao, Lihua & Su, Jingkai & Li, Qi & Li, Yong, 2020. "Distribution characteristics of salt-out particles in steam turbine stage," Energy, Elsevier, vol. 192(C).
    4. Xinyuan Du & Jiapu Li & Guangda Niu & Jun-Hui Yuan & Kan-Hao Xue & Mengling Xia & Weicheng Pan & Xiaofei Yang & Benpeng Zhu & Jiang Tang, 2021. "Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Xu, Qian & Wang, Kang & Zou, Zhenwei & Zhong, Liqiong & Akkurt, Nevzat & Feng, Junxiao & Xiong, Yaxuan & Han, Jingxiao & Wang, Jiulong & Du, Yanping, 2021. "A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system," Energy, Elsevier, vol. 218(C).
    6. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    7. Liu, Chao & Hashemian, Mehran & Shawabkeh, Ali & Dizaji, Hamed Sadighi & Saleem, S. & Mohideen Batcha, Mohd Faizal & Wae-hayee, Makatar, 2021. "CFD-based irreversibility analysis of avant-garde semi-O/O-shape grooving fashions of solar pond heat trade-off unit," Renewable Energy, Elsevier, vol. 171(C), pages 328-343.
    8. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    2. Cao, Yan & Hashemian, Mehran & Ayed, Hamdi & Shawabkeh, Ali & Issakhov, Alibek & Wae-hayee, Makatar, 2022. "Design-eligibility study of solar thermal helically coiled heat exchanging system with annular dimples by irreversibility concept," Renewable Energy, Elsevier, vol. 183(C), pages 369-384.
    3. Gao, Datong & Wu, Lijun & Hao, Yong & Pei, Gang, 2022. "Ultrahigh-efficiency solar energy harvesting via a non-concentrating evacuated aerogel flat-plate solar collector," Renewable Energy, Elsevier, vol. 196(C), pages 1455-1468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    2. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    3. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    4. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    5. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    6. Yicong Li & Zuoqin Qian & Qiang Wang, 2021. "Numerical Analysis on Thermohydraulic Performance of the Tube Inserted with Rectangular Winglet Vortex Generators," Energies, MDPI, vol. 15(1), pages 1-23, December.
    7. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    8. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    9. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    10. Hu, Pengfei & Liang, Qi & Fan, Tiantian & Wang, Yanhong & Li, Qi, 2024. "Investigation of heterogeneous condensation flow characteristics in the steam turbine based on homogeneous-heterogeneous condensation coupling model using OpenFOAM," Energy, Elsevier, vol. 296(C).
    11. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    12. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    13. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    14. Huiqiong Huang & Jie Tian & Jiangtao Li & Dongli Tan, 2022. "Effects of Different Exhaust Gas Recirculation (EGR) Rates on Combustion and Emission Characteristics of Biodiesel–Diesel Blended Fuel Based on an Improved Chemical Mechanism," Energies, MDPI, vol. 15(11), pages 1-23, June.
    15. Hua, Yang & Qian, Yejian & Meng, Shun, 2023. "PAH laser diagnostics and soot particle dynamics in gasoline co-flow flames doped with n-butanol," Energy, Elsevier, vol. 272(C).
    16. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    17. Zhiyue Mu & Jianqin Fu & Feng Zhou & Kainan Yuan & Juan Yu & Dan Huang & Zhuangping Cui & Xiongbo Duan & Jingping Liu, 2023. "A Comparatively Experimental Study on the Performance and Emission Characteristics of a Diesel Engine Fueled with Tung Oil-Based Biodiesel Blends (B10, B20, B50)," Energies, MDPI, vol. 16(14), pages 1-15, July.
    18. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Gallegos, Ralph Kristoffer B. & Sharma, Rajnish N., 2017. "Flags as vortex generators for heat transfer enhancement: Gaps and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 950-962.
    20. Binyamin Binyamin & Ocktaeck Lim, 2023. "Numerical Analysis of the Structural and Flow Rate Characteristics of the Fuel Injection Pump in a Marine Diesel Engine," Sustainability, MDPI, vol. 15(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1344-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.