IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp1618-1635.html
   My bibliography  Save this article

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains

Author

Listed:
  • Wang, Shuaishuai
  • Moan, Torgeir
  • Nejad, Amir R.

Abstract

Traditionally, drivetrain responses are obtained by a de-coupled analysis, which first involves a global analysis with a simplified representation of the drivetrain, followed by a detailed analysis of the drivetrain with the input of global response on the drivetrain interface. As the wind turbine size increases, it is questionable whether this de-coupled analysis method yields sufficiently accurate results. To address this question, a comparative study of the drivetrain dynamic behaviour obtained by a fully coupled method and a de-coupled one, is conducted and reported in this paper. A 10-MW fully coupled aero-hydro-servo-elastic floating wind turbine dynamic model is developed, including a high-fidelity drivetrain. The developed fully coupled model is assessed to be reasonable via the comparison of drivetrain first-order natural frequency and code-to-code comparisons in terms of global responses between two simulation tools Simpack and Fast. Resonance analysis of the 10-MW drivetrain in the fully coupled model is performed, with focus on rotor-drivetrain-bedplate-tower coupled modes in the low frequency range. Time domain simulations of the drivetrain in the fully coupled and the de-coupled models are carried out in different environmental conditions. One-hour fatigue damage of drivetrain gears and bearings in the fully coupled and de-coupled models are compared. Effect of nacelle motion on drivetrain fatigue damage in the de-coupled analysis is discussed. The results are presented to demonstrate whether the de-coupled method could be confidently used for drivetrain dynamic analysis. This study provides a basis for drivetrain design and dynamic analysis in floating wind turbines.

Suggested Citation

  • Wang, Shuaishuai & Moan, Torgeir & Nejad, Amir R., 2021. "A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains," Renewable Energy, Elsevier, vol. 179(C), pages 1618-1635.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1618-1635
    DOI: 10.1016/j.renene.2021.07.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121011472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    2. Wang, Shuaishuai & Nejad, Amir R. & Bachynski, Erin E. & Moan, Torgeir, 2020. "Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine," Renewable Energy, Elsevier, vol. 161(C), pages 808-824.
    3. Zhou, Shengtao & Li, Chao & Xiao, Yiqing & Cheng, Po Wen, 2020. "Importance of platform mounting orientation of Y-shaped semi-submersible floating wind turbines: A case study by using surrogate models," Renewable Energy, Elsevier, vol. 156(C), pages 260-278.
    4. Li, Zhanwei & Wen, Binrong & Wei, Kexiang & Yang, Wenxian & Peng, Zhike & Zhang, Wenming, 2020. "Flexible dynamic modeling and analysis of drive train for Offshore Floating Wind Turbine," Renewable Energy, Elsevier, vol. 145(C), pages 1292-1305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yize & Liu, Zhenqing & Ma, Xueyun, 2023. "Improvement of tuned rolling cylinder damper for wind turbine tower vibration control considering real wind distribution," Renewable Energy, Elsevier, vol. 216(C).
    2. Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    2. Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.
    3. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    4. Wang, Shuaishuai & Nejad, Amir R. & Bachynski, Erin E. & Moan, Torgeir, 2020. "Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine," Renewable Energy, Elsevier, vol. 161(C), pages 808-824.
    5. Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
    6. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    7. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    8. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Ahmet Selim Pehlivan & Mahmut Faruk Aksit & Kemalettin Erbatur, 2021. "Fatigue Analysis Design Approach, Manufacturing and Implementation of a 500 kW Wind Turbine Main Load Frame," Energies, MDPI, vol. 14(12), pages 1-15, June.
    10. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    11. Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
    12. Zhou, Shengtao & Li, Chao & Xiao, Yiqing & Wang, Xiaolu & Xiang, Wenyuan & Sun, Qing, 2023. "Evaluation of floating wind turbine substructure designs by using long-term dynamic optimization," Applied Energy, Elsevier, vol. 352(C).
    13. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    14. Zhao, Shuang & Wang, Jianwen & Han, Yuxia & Liu, Zhen, 2022. "Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation," Energy, Elsevier, vol. 249(C).
    15. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    16. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    17. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
    18. Sun, Qinghong & Li, Gen & Duan, Lei & He, Zanyang, 2023. "The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines," Energy, Elsevier, vol. 282(C).
    19. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    20. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1618-1635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.