IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1070-1083.html
   My bibliography  Save this article

Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions

Author

Listed:
  • Ostovar, Somayeh
  • Saravani, Hamideh
  • Rodríguez-Padrón, Daily

Abstract

Through this work, a family of sulfonamide functionalized mesoporous materials as sustainable heterogeneous catalysts has been successfully synthesized by employing sulfaguanidine, sulfathiazole, and sulfadiazine. The samples were fully characterized using a multitechnique approach. Such materials have proved to be highly versatile and catalytically active in both the advances in the hydrogenation of Levulinic acid through heterogeneous catalytic transfer hydrogenation (CTH) and oxidation reactions with a strong emphasis on discussing morphology and structure of versatile catalysts, plausible mechanism, and performance of the catalysts for biomass valorization of renewable feedstock. In particular, the prepared catalytic systems were tested in levulinic acid transformation into γ-Valerolactone, achieving a maximum conversion of 99% and a selectivity of 90% for the sulfaguanidine modified sample. The three nanocatalysts displayed good stability over four reuse cycles, and by considering the results of a hot filtration test, it is confirmed that the nature of the catalysis is heterogeneous as acid-base pairs and functionalized groups on catalytic activation of C–H and CO bonds for transfer hydrogenation of levulinic acid. Moreover, such samples also showed remarkable results in the oxidation of benzyl alcohol towards benzaldehyde, with conversion and selectivity values of 95% and 97%, respectively. The obtained catalytic results are highly promising for biomass upgrading processes, looking forward to a more sustainable future.

Suggested Citation

  • Ostovar, Somayeh & Saravani, Hamideh & Rodríguez-Padrón, Daily, 2021. "Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions," Renewable Energy, Elsevier, vol. 178(C), pages 1070-1083.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1070-1083
    DOI: 10.1016/j.renene.2021.06.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    2. Yu, Zhihao & Lu, Xuebin & Liu, Chen & Han, Yiwen & Ji, Na, 2019. "Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 140-157.
    3. Xu, Chunping & Paone, Emilia & Rodríguez-Padrón, Daily & Luque, Rafael & Mauriello, Francesco, 2020. "Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Feiyi & Wang, Yue & Zhang, Junhua & Liu, Huai & Peng, Lincai, 2023. "Construction of HfO2 nanoparticles with rich hydroxyl group for the efficient catalytic transfer hydrogenation of furfural," Renewable Energy, Elsevier, vol. 215(C).
    2. Fang, Juan & Dong, Hao & Xu, Haimei, 2023. "The effect of Lewis acidity of tin loading siliceous MCM-41 on glucose conversion into 5-hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    3. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    4. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    5. Dastan Bamwesigye & Petr Kupec & Georges Chekuimo & Jindrich Pavlis & Obed Asamoah & Samuel Antwi Darkwah & Petra Hlaváčková, 2020. "Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    6. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    7. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    8. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    9. Yang, Chunlei & Dong, Lifeng & Gao, Yanhua & Jia, Peng & Diao, Qiyu, 2021. "Engineering acetogens for biofuel production: From cellular biology to process improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    11. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.
    12. Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    14. Esteves, Elisa M.M. & Brigagão, George V. & Morgado, Cláudia R.V., 2021. "Multi-objective optimization of integrated crop-livestock system for biofuels production: A life-cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Sara Almasi & Barat Ghobadian & Gholam Hassan Najafi & Talal Yusaf & Masoud Dehghani Soufi & Seyed Salar Hoseini, 2019. "Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology," Energies, MDPI, vol. 12(14), pages 1-14, July.
    17. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Daniela D. Porcino & Francesco Mauriello & Lucio Bonaccorsi & Giuseppe Tomasello & Emilia Paone & Angela Malara, 2020. "Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    19. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    20. Eckert, C.T. & Frigo, E.P. & Albrecht, L.P. & Albrecht, A.J.P. & Christ, D. & Santos, W.G. & Berkembrock, E. & Egewarth, V.A., 2018. "Maize ethanol production in Brazil: Characteristics and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3907-3912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1070-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.