IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp383-390.html
   My bibliography  Save this article

Unveiling the catalytic effects of Brønsted acidic ionic liquid on quantitative α-glucose conversion to 5-HMF: Experimental and computational studies

Author

Listed:
  • Abdullayev, Yusif
  • Ahmadov, Orkhan
  • Valadova, Gunay
  • Karimli, Ayan
  • Autschbach, Jochen

Abstract

Effective biomass conversion to 5-HMF(5-hydroxymethylfurfural) is still a challenge and needs to be improved because of the 5-HMF importance as building blocks for valuable monomers and fuel precursors. We suggest for the first time utilization of low-cost metal-free Brønsted acidic Ionic liquid (IL) N,N-Diethyl-1,4-phenylenediamine hydrogen sulfate, [DPhDA]HSO4 as a catalyst for the α-glucose dehydration to 5-HMF. Quantitative α-glucose conversion is achieved via optimizing the reaction condition: 91.4% 5-HMF yield with 30 mol% [DPhDA]HSO4 in the presence of DMSO as a solvent at 160 °C in 30 min (TOF 6.1 h−1). 3-fold increase in reaction time leads to higher (94%) 5-HMF yield at 160 °C with lower TOF 1.6 h−1. The IL surprising catalytic performance is scrutinized with its amphiprotic nature (availability of basic and acidic spots in its structure (Fig. 1)). Further computational mechanistic studies revealed the function of the catalytic sites in the α-glucose dehydration. We calculated five-membered ring formation and water extrusion in one concerted transition state (TS2A, ΔG‡ = 38.8 kcal/mol) following the α-glucose ring-opening (TS1, ΔG‡ = 20.4 kcal/mol). Further four steps (sp3-s, C–H bond cleavages (TS3, TS6) and dehydroxylation (TS4A, TS5)) are quite straightforward to reach the product (5-HMF).

Suggested Citation

  • Abdullayev, Yusif & Ahmadov, Orkhan & Valadova, Gunay & Karimli, Ayan & Autschbach, Jochen, 2021. "Unveiling the catalytic effects of Brønsted acidic ionic liquid on quantitative α-glucose conversion to 5-HMF: Experimental and computational studies," Renewable Energy, Elsevier, vol. 171(C), pages 383-390.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:383-390
    DOI: 10.1016/j.renene.2021.02.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    2. Jan-Georg Rosenboom & Diana Kay Hohl & Peter Fleckenstein & Giuseppe Storti & Massimo Morbidelli, 2018. "Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niakan, Mahsa & Masteri-Farahani, Majid & Seidi, Farzad, 2022. "Efficient glucose-to-HMF conversion in deep eutectic solvents over sulfonated dendrimer modified activated carbon," Renewable Energy, Elsevier, vol. 200(C), pages 1134-1140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    2. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    3. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    4. Mohammad Nahid Siddiqui & Halim Hamid Redhwi & Abdulrahman A. Al-Arfaj & Dimitris S. Achilias, 2021. "Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    5. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    7. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    8. Ya, Yuchen & Nie, Xiaokang & Han, Weiwei & Xiang, Longkai & Gu, Mingyan & Chu, Huaqiang, 2020. "Effects of 2, 5–dimethylfuran/ethanol addition on soot formation in n-heptane/iso-octane/air coflow diffusion flames," Energy, Elsevier, vol. 210(C).
    9. Viar, Nerea & Requies, Jesús M. & Agirre, Ion & Iriondo, Aitziber & Arias, Pedro L., 2019. "Furanic biofuels production from biomass using Cu-based heterogeneous catalysts," Energy, Elsevier, vol. 172(C), pages 531-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:383-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.