IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v16y1999i1p1237-1240.html
   My bibliography  Save this article

Impact of competitive electricity market on renewable generation technology choice and policies in the United States

Author

Listed:
  • Sarkar, Ashok

Abstract

Market objectives based on private value judgments will conflict with social policy objectives toward environmental quality in an emerging restructured electricity industry. This might affect the choice of renewables in the future generation mix. The US electricity industry's long-range capacity planning and operations is simulated for alternative market paradigms to study this impact. The analysis indicates that the share of renewable energy generation sources would decrease and emissions would increase considerably in a more competitive industry, with greater impact occurring in a monopoly market. Alternative environmental policy options can overcome market failures and help achieve appropriate levels of renewable generation. An evaluation of these policies indicate their varying cost-effectiveness, with higher levels of intervention necessary if market power exists.

Suggested Citation

  • Sarkar, Ashok, 1999. "Impact of competitive electricity market on renewable generation technology choice and policies in the United States," Renewable Energy, Elsevier, vol. 16(1), pages 1237-1240.
  • Handle: RePEc:eee:renene:v:16:y:1999:i:1:p:1237-1240
    DOI: 10.1016/S0960-1481(98)00496-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198004960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00496-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hobbs, Benjamin F. & Centolella, Paul, 1995. "Environmental policies and their effects on utility planning and operations," Energy, Elsevier, vol. 20(4), pages 255-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nhan T. Nguyen & Minh Ha-Duong, 2009. "The potential for mitigation of CO2 emissions in Vietnam's power sector," Working Papers 22, Development and Policies Research Center (DEPOCEN), Vietnam.
    2. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    3. Pezzini, Paola & Gomis-Bellmunt, Oriol & Frau-Valentí, Joan & Sudrià-Andreu, Antoni, 2010. "Energy efficiency optimization in distribution transformers considering Spanish distribution regulation policy," Energy, Elsevier, vol. 35(12), pages 4685-4690.
    4. Shrestha, Ram M. & O.P. Marpaung, Charles, 2002. "Supply- and demand-side effects of power sector planning with CO2 mitigation constraints in a developing country," Energy, Elsevier, vol. 27(3), pages 271-286.
    5. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "Portfolio assessments for future generation investment in newly industrializing countries – A case study of Thailand," Energy, Elsevier, vol. 44(1), pages 1044-1058.
    6. Shrestha, Ram M. & Marpaung, Charles O. P., 2005. "Supply- and demand-side effects of power sector planning with demand-side management options and SO2 emission constraints," Energy Policy, Elsevier, vol. 33(6), pages 815-825, April.
    7. Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
    8. Mohammad Dehghani & Mohammad Mardaneh & Om P. Malik & Josep M. Guerrero & Carlos Sotelo & David Sotelo & Morteza Nazari-Heris & Kamal Al-Haddad & Ricardo A. Ramirez-Mendoza, 2020. "Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers," Sustainability, MDPI, vol. 12(23), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:16:y:1999:i:1:p:1237-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.