IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp414-422.html
   My bibliography  Save this article

Smart catalyst deposition by 3D printing for Polymer Electrolyte Membrane Fuel Cell manufacturing

Author

Listed:
  • Cannio, Maria
  • Righi, Stefania
  • Santangelo, Paolo E.
  • Romagnoli, Marcello
  • Pedicini, Rolando
  • Carbone, Alessandra
  • Gatto, Irene

Abstract

Polymer Electrolyte Membrane Fuel Cells (PEMFC) are arguably the most employed fuel-cell types in various industry sectors, as they operate at low temperature and exhibit short start-up time and high durability. PEMFC manufacturing is currently transitioning from low-volume to mass production. Within this effort, efficient catalyst deposition to produce MEA (Membrane Electrode Assembly) electrodes has become instrumental, since very expensive raw materials are involved. This work focuses on an Additive Manufacturing (AM) technique – a modified 3D printing approach – used to release catalytic inks onto PEMFC electrodes. Some catalyst-free suspensions were designed to resemble a catalytic ink and characterized to assess their printability by microextrusion. Mixtures of distilled water, ethanol and graphite were prepared and tested. Granulometric and rheometric analyses were conducted to optimize the composition towards low viscosity values and short drying time. Repeatability of the released amount and its homogeneousness onto the target surface were evaluated. The most suitable ink formulation was loaded with platinum, a perfluorosulfonic ionomer, a pore former (NH4CO3) and deposited onto Gas Diffusion Layers (GDL). Scanning Electron Microscopy (SEM) measurements were performed on the 3D-printed electrodes to characterize it. Preliminary electrochemical fuel-cell tests were carried out towards a comparison with conventional electrodes: the proposed deposition technique appears able to produce electrodes that align with state-of-the-art performance level.

Suggested Citation

  • Cannio, Maria & Righi, Stefania & Santangelo, Paolo E. & Romagnoli, Marcello & Pedicini, Rolando & Carbone, Alessandra & Gatto, Irene, 2021. "Smart catalyst deposition by 3D printing for Polymer Electrolyte Membrane Fuel Cell manufacturing," Renewable Energy, Elsevier, vol. 163(C), pages 414-422.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:414-422
    DOI: 10.1016/j.renene.2020.08.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De las Heras, A. & Vivas, F.J. & Segura, F. & Andújar, J.M., 2018. "From the cell to the stack. A chronological walk through the techniques to manufacture the PEFCs core," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 29-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taehyoung Noh & Kayoung Park & Ruijing Gao & Naoki Kimura & Gen Inoue & Yoshifumi Tsuge, 2022. "Effect of Double-Sided 3D Patterned Cathode Catalyst Layers on Polymer Electrolyte Fuel Cell Performance," Energies, MDPI, vol. 15(3), pages 1-15, February.
    2. Rolando Pedicini & Marcello Romagnoli & Paolo E. Santangelo, 2023. "A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment," Energies, MDPI, vol. 16(7), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José-Luis Casteleiro-Roca & Francisco José Vivas & Francisca Segura & Antonio Javier Barragán & Jose Luis Calvo-Rolle & José Manuel Andújar, 2020. "Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Antonio José Calderón & Francisco José Vivas & Francisca Segura & José Manuel Andújar, 2020. "Integration of a Multi-Stack Fuel Cell System in Microgrids: A Solution Based on Model Predictive Control," Energies, MDPI, vol. 13(18), pages 1-24, September.
    4. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.
    5. Dinesh Kumar Madheswaran & Mohanraj Thangamuthu & Sakthivel Gnanasekaran & Suresh Gopi & Tamilvanan Ayyasamy & Sujit S. Pardeshi, 2023. "Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    6. Mario Kircher & Michaela Roschger & Wai Yee Koo & Fabio Blaschke & Maximilian Grandi & Merit Bodner & Viktor Hacker, 2023. "Effects of Catalyst Ink Storage on Polymer Electrolyte Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:414-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.