IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp398-413.html
   My bibliography  Save this article

Minimizing weight of ambient air vaporizer by using identical and different number of fins along the length

Author

Listed:
  • Jadav, Chirag
  • Chowdhury, Kanchan

Abstract

Ambient air vaporizer employed to vaporize liquid cryogens such as air, nitrogen, argon, natural gas etc. by using renewable energy from atmosphere is environment-friendly and energy efficient. However, the large size and price act against their ready acceptability. Moisture of air that freezes and deposits on the fin surface deteriorates the rate of heat transfer over time and increases the size of the vaporizer. Understanding the inter-relationship of the environmental condition, fin geometry and growth of frost over the fin-surface that adversely affects the flow of air through the vaporizer is the key to reduction of the size. Numerical model that incorporates the phenomena of flow boiling of cryogen inside vaporizer tubes and frost formation over the fin surface has been developed. Optimization of number of fins, fin height and vaporizer tube length using Genetic Algorithm reduced total weight of the vaporizer for 24 h of continuous vaporization of liquid nitrogen. A configuration of 6 fins shows better performance than 8 fins and 12 fins reducing weight by 6% and 20% respectively. The work further showed that using 6 fins and 8 fins (multiple fins) for equal lengths reduced the weight of the vaporizer by another 5%.

Suggested Citation

  • Jadav, Chirag & Chowdhury, Kanchan, 2021. "Minimizing weight of ambient air vaporizer by using identical and different number of fins along the length," Renewable Energy, Elsevier, vol. 163(C), pages 398-413.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:398-413
    DOI: 10.1016/j.renene.2020.08.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shanshan & Jiao, Wenling & Wang, Haichao, 2016. "Three-dimensional numerical analysis of the coupled heat transfer performance of LNG ambient air vaporizer," Renewable Energy, Elsevier, vol. 87(P3), pages 1105-1112.
    2. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Karimi, Ali & Kalavani, Farshid, 2019. "Stochastic optimal sizing of integrated cryogenic energy storage and air liquefaction unit in microgrid," Renewable Energy, Elsevier, vol. 136(C), pages 15-22.
    3. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2007. "Frosting of heat pump with heat recovery facility," Renewable Energy, Elsevier, vol. 32(7), pages 1228-1242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shanshan & Jiao, Wenling & Wang, Chunhua, 2024. "Coupled heat transfer analysis of U-type tube module of LNG ambient air vaporizer under dry conditions," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    2. Liu, Shanshan & Jiao, Wenling & Wang, Chunhua, 2024. "Coupled heat transfer analysis of U-type tube module of LNG ambient air vaporizer under dry conditions," Renewable Energy, Elsevier, vol. 221(C).
    3. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    4. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    5. Dai, Rui & Tian, Ran & Zheng, Siyu & Wei, Mingshan & Shi, GuoHua, 2022. "Dynamic performance evaluation of LNG vaporization system integrated with solar-assisted heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 561-572.
    6. Wang, Zhe & Cai, Wenjian & Han, Fenghui & Ji, Yulong & Li, Wenhua & Sundén, Bengt, 2019. "Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: Theoretical and experimental assessments," Energy, Elsevier, vol. 181(C), pages 771-781.
    7. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).
    8. Liu, Shanshan & Jiao, Wenling & Ren, Lemei & Tian, Xinghao, 2020. "Thermal resistance analysis of cryogenic frosting and its effect on performance of LNG ambient air vaporizer," Renewable Energy, Elsevier, vol. 149(C), pages 917-927.
    9. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    10. Oh, Eunsung & Son, Sung-Yong, 2020. "Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management," Renewable Energy, Elsevier, vol. 155(C), pages 1060-1069.
    11. Wang, W. & Xiao, J. & Guo, Q.C. & Lu, W.P. & Feng, Y.C., 2011. "Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena," Applied Energy, Elsevier, vol. 88(12), pages 4470-4480.
    12. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2010. "Active low-grade energy recovery potential for building energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2736-2747, December.
    13. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    14. Zhongchao Zhao & Kai Zhao & Dandan Jia & Pengpeng Jiang & Rendong Shen, 2017. "Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger," Energies, MDPI, vol. 10(11), pages 1-18, November.
    15. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    16. Gao, Jinling & Maalla, Allam & Li, Xuetao & Zhou, Xiao & Lian, Kong, 2024. "Comprehensive model for efficient microgrid operation: Addressing uncertainties and economic considerations," Energy, Elsevier, vol. 306(C).
    17. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Xue Zhou & Jianan Shou & Weiwei Cui, 2022. "A Game-Theoretic Approach to Design Solar Power Generation/Storage Microgrid System for the Community in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    20. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:398-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.