IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i7p1228-1242.html
   My bibliography  Save this article

Frosting of heat pump with heat recovery facility

Author

Listed:
  • Liu, Di
  • Zhao, Fu-Yun
  • Tang, Guang-Fa

Abstract

This paper aims to prolong the heat pump frost time and reduce its growth with heat recovery facility, which should mix the exhausted indoor and outdoor air before entering the evaporator. An ideal mathematic model is developed for heat transfer, frost generation and airside pressure drop. The properties of the mixture would be obtained by solving the mass and energy conservation equations. A parametric analysis is performed to investigate the effects of air inlet temperature, relative humidity and air mass flow rate on total heat transfer coefficient, frost thickness and airside pressure drop, respectively. The results show that rationalizing the ratio of indoor and outdoor air could prolong frosting time and reduce the frost thickness greatly. The total heat transfer coefficient, frost thickness and airside pressure drop increase monotonically with time going, but are not proportional. Decreasing the mixture inlet air temperature and relative humidity could essentially reduce frost growth on the tube surfaces. This can also be observed when increasing the air mass flow rate.

Suggested Citation

  • Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2007. "Frosting of heat pump with heat recovery facility," Renewable Energy, Elsevier, vol. 32(7), pages 1228-1242.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1228-1242
    DOI: 10.1016/j.renene.2006.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106001042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, S.W. & Liu, Z.Y., 2005. "A new method for preventing HP from frosting," Renewable Energy, Elsevier, vol. 30(5), pages 753-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2010. "Active low-grade energy recovery potential for building energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2736-2747, December.
    2. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    3. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    4. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    5. Jadav, Chirag & Chowdhury, Kanchan, 2021. "Minimizing weight of ambient air vaporizer by using identical and different number of fins along the length," Renewable Energy, Elsevier, vol. 163(C), pages 398-413.
    6. Wang, W. & Xiao, J. & Guo, Q.C. & Lu, W.P. & Feng, Y.C., 2011. "Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena," Applied Energy, Elsevier, vol. 88(12), pages 4470-4480.
    7. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    8. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    2. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    3. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    4. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    5. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    7. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1228-1242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.